203
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Atomic structure insight into crystallization of undercooled liquid metal Zr during isothermal relaxation processes

, , , &
Pages 2904-2919 | Received 19 Mar 2019, Accepted 03 Jul 2019, Published online: 23 Jul 2019

References

  • F.H. Streitz, J.N. Glosli and M.V. Patel, Beyond finite-size scaling in solidification simulations. Phys. Rev. Lett. 96 (2006), pp. 225701. doi: 10.1103/PhysRevLett.96.225701
  • Y. Shibuta, S. Sakane, T. Takaki and M. Ohno, Submicrometer-scale molecular dynamics simulation of nucleation and solidification from undercooled melt: Linkage between empirical interpretation and atomistic nature. Acta Mater. 105 (2016), pp. 328–337. doi: 10.1016/j.actamat.2015.12.033
  • Y. Shibuta, M. Ohno and T. Takaki, Solidification in a supercomputer: from crystal nuclei to dendrite assemblages. JOM 67 (2015), pp. 1793–1804. doi: 10.1007/s11837-015-1452-2
  • S. Okita, W. Verestek, S. Sakane, T. Takaki, M. Ohno and Y. Shibuta, Molecular dynamics simulations investigating consecutive nucleation, solidification and grain growth in a twelve-million-atom Fe-system. J. Cryst. Growth 474 (2017), pp. 140–145. doi: 10.1016/j.jcrysgro.2016.11.120
  • S.-Y. Chung, Y.-M. Kim, J.-G. Kim and Y.-J. Kim, Multiphase transformation and Ostwald’s rule of stages during crystallization of a metal phosphate. Nat. Phys. 5 (2009), pp. 68–73. doi: 10.1038/nphys1148
  • A. Bogno, H. Nguyen-Thi, A. Buffet, G. Reinhart, B. Billia, N. Mangelinck-Noël, N. Bergeon, J. Baruchel and T. Schenk, Analysis by synchrotron X-ray radiography of convection effects on the dynamic evolution of the solid–liquid interface and on solute distribution during the initial transient of solidification. Acta Mater. 59 (2011), pp. 4356–4365. doi: 10.1016/j.actamat.2011.03.059
  • B. Cai, J. Wang, A. Kao, K. Pericleous, A.B. Phillion, R.C. Atwood and P.D. Lee, 4D synchrotron X-ray tomographic quantification of the transition from cellular to dendrite growth during directional solidification. Acta Mater. 117 (2016), pp. 160–169. doi: 10.1016/j.actamat.2016.07.002
  • Z.-Y. Hou, L.-X. Liu, R.-S. Liu, Z.-A. Tian and J.-G. Wang, Kinetic details of nucleation in supercooled liquid Na: A simulation tracing study. Chem. Phys. Lett. 491 (2010), pp. 172–176. doi: 10.1016/j.cplett.2010.04.003
  • J.C.E.L. Wang, Y. Cai, H.A. Wu and S.N. Luo, Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth. J. Chem. Phys. 142 (2015), pp. 064704. doi: 10.1063/1.4907627
  • H. Pang, Z.H. Jin and K. Lu, Relaxation, nucleation, and glass transition in supercooled liquid Cu. Phys. Rev. B 67 (2003), pp. 094113. doi: 10.1103/PhysRevB.67.094113
  • Y. Shibuta, S. Sakane, E. Miyoshi, S. Okita, T. Takaki and M. Ohno, Heterogeneity in homogeneous nucleation from billion-atom molecular dynamics simulation of solidification of pure metal. Nat. Commun. 8 (2017), pp. 1–10. doi: 10.1038/s41467-017-00017-5
  • Z.Y. Hou, K.J. Dong, Z.A. Tian, R.S. Liu, Z. Wang and J.G. Wang, Cooling rate dependence of solidification for liquid aluminium: a large-scale molecular dynamics simulation study. Phys. Chem. Chem. Phys. 18 (2016), pp. 17461–17469. doi: 10.1039/C6CP02172G
  • P.R. ten Wolde, M.J.R. Montero and D. Frenke, Numerical evidence for bcc ordering at the surface of a critical fcc nucleus. Phys. Rev. Lett. 75 (1995), pp. 2714–2717. doi: 10.1103/PhysRevLett.75.2714
  • C. Desgranges and J. Delhommelle, Molecular mechanism for the cross-nucleation between polymorphs. J. Am. Chem. Soc. 128 (2006), pp. 10368–10369. doi: 10.1021/ja063218f
  • G.D. Leines, R. Drautz and J. Rogal, Atomistic insight into the non-classical nucleation mechanism during solidification in Ni. J. Chem. Phys. 146 (2017), pp. 154702. doi: 10.1063/1.4980082
  • W. Ostwald, Studien uber die bildung und umwandlung fester korper. Z. Phys. Chem. 22 (1897), pp. 289–293.
  • D. Wen, Y. Deng, J. Liu, Z. Tian and P. Peng, Effect of high pressure on the formation and evolution of clusters during the rapid solidification of zirconium melts. Comput. Mater. Sci. 140 (2017), pp. 275–283. doi: 10.1016/j.commatsci.2017.07.040
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117 (1995), pp. 1–19. doi: 10.1006/jcph.1995.1039
  • https://sites.google.com/site/eampotentials/Home/zr.
  • H.W. Sheng, M.J. Kramer, A. Cadien, T. Fujita and M.W. Chen, Highly optimized embedded-atom-method potentials for fourteen fcc metals. Phys. Rev. B 83 (2011), pp. 134118. doi: 10.1103/PhysRevB.83.134118
  • Y. Mo, Z. Tian, R. Liu, Z. Hou, L. Zhou, P. Peng, H. Zhang and Y. Liang, Molecular dynamics study on microstructural evolution during crystallization of rapidly supercooled zirconium melts. J. Alloys Compd. 688 (2016), pp. 654–665. doi: 10.1016/j.jallcom.2016.07.221
  • Y. Mo, Z. Tian, L. Lang, R. Liu, L. Zhou, Z. Hou, P. Peng and T. Zhang, The short-range order in liquid and A15 crystal of zirconium. J. Non-Cryst. Solids 513 (2019), pp. 111–119. doi: 10.1016/j.jnoncrysol.2019.03.016
  • F. Willaime and C. Massobrio, Temperature-induced hcp-bcc phase transformation in zirconium: a lattice and molecular-dynamics study based on an N-body potential. Phys. Rev. Lett. 63 (1989), pp. 2244–2247. doi: 10.1103/PhysRevLett.63.2244
  • B.L. Zhang, C.Z. Wang, K.M. Ho, D. Turner and Y.Y. Ye, Anomalous phonon behavior and phase fluctuations in bcc Zr. Phys. Rev. Lett. 74 (1995), pp. 1375–1378. doi: 10.1103/PhysRevLett.74.1375
  • Z.W. Wu, M.Z. Li, W.H. Wang, W.J. Song and K.X. Liu, Effect of local structures on structural evolution during crystallization in undercooled metallic glass-forming liquids. J. Chem. Phys. 138 (2013), pp. 074502. doi: 10.1063/1.4792067
  • S.Q. Jiang, Z.W. Wu and M.Z. Li, Effect of local structures on crystallization in deeply undercooled metallic glass-forming liquids. J. Chem. Phys. 144 (2016), pp. 154502. doi: 10.1063/1.4946866
  • Y.Q. Cheng and E. Ma, Atomic-level structure and structure–property relationship in metallic glasses. Prog. Mater. Sci. 56 (2011), pp. 379–473. doi: 10.1016/j.pmatsci.2010.12.002
  • Z.A. Tian, K.J. Dong and A.B. Yu, Structural evolution in the crystallization of rapid cooling silver melt. Ann. Phys. 354 (2015), pp. 499–510. doi: 10.1016/j.aop.2014.12.021
  • Z.A. Tian, K.J. Dong and A.B. Yu, A method for structural analysis of disordered particle systems. AIP Conf. Proc. 1542 (2013), pp. 373–376. doi: 10.1063/1.4811945
  • D. Jiang, D. Wen, Z. Tian and R. Liu, Glass formation and cluster evolution in the rapidly solidified monatomic metallic liquid Ta under high pressure. Phys. A 463 (2016), pp. 174–181. doi: 10.1016/j.physa.2016.07.032
  • D. Wen, Y. Deng, X. Dai, Z. Tian, Y. Mo and P. Peng, Evolution of local atomic structures during rapid solidification of liquid metal W. Mod. Phys. Lett. B 32 (2018), pp. 1850368. doi: 10.1142/S0217984918503682
  • M.C. Flemings, Solidification Processing, McGraw-Hill, New York, 1974.
  • Y. Shibuta, K. Oguchi, T. Takaki and M. Ohno, Homogeneous nucleation and microstructure evolution in million-atom molecular dynamics simulation. Sci. Rep. 5 (2015), pp. 13534. doi: 10.1038/srep13534

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.