307
Views
15
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Phase-field lattice-Boltzmann investigation of dendritic evolution under different flow modes

, , , &
Pages 2920-2940 | Received 12 Mar 2019, Accepted 08 Jul 2019, Published online: 26 Jul 2019

References

  • J.A. Dantzig and M. Rappaz, Solidification, EPFL Press, Lausanne, 2009.
  • A. Zhang, J. Du, Z. Guo, Q. Wang, and S. Xiong, A phase-field lattice-Boltzmann study on dendritic growth of Al-Cu alloy under convection. Metall. Mater. Trans. B 49 (2018), pp. 3603–3615. doi: 10.1007/s11663-018-1418-1
  • S. Wang, Z.P. Guo, X.P. Zhang, A. Zhang, and J.W. Kang, On the mechanism of dendritic fragmentation by ultrasound induced cavitation. Ultrason. Sonochem. 51 (2019), pp. 160–165. doi: 10.1016/j.ultsonch.2018.10.031
  • R. Tönhardt and G. Amberg, Dendritic growth of randomly oriented nuclei in a shear flow. J. Cryst. Growth 213 (2000), pp. 161–187. doi: 10.1016/S0022-0248(00)00333-X
  • A. Zhang, J. Du, Z. Guo, and S. Xiong, Lamellar eutectic growth under forced convection: A phase-field lattice-Boltzmann study based on a modified Jackson-Hunt theory. Phys. Rev. E 98 (2018), pp. 43301. doi: 10.1103/PhysRevE.98.043301
  • A. Zhang, S. Liang, Z. Guo, and S. Xiong, Determination of the interfacial heat transfer coefficient at the metal-sand mold interface in low pressure sand casting. Exp. Therm Fluid Sci. 88 (2017), pp. 472–482. doi: 10.1016/j.expthermflusci.2017.07.002
  • A. Zhang, S. Meng, Z. Guo, J. Du, Q. Wang, and S. Xiong, Dendritic growth under natural and forced convection in Al-Cu alloys: From equiaxed to columnar dendrites and from 2D to 3D phase- field simulations. Metall. Mater. Trans. B 50 (2019), pp. 1514–1526. doi: 10.1007/s11663-019-01549-5
  • W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma, Phase-field simulation of solidification. Annu. Rev. Mater. Res. 32 (2002), pp. 163–194. doi: 10.1146/annurev.matsci.32.101901.155803
  • M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, and R. Trivedi, Solidification microstructures and solid-state parallels: Recent developments, future directions. Acta Mater. 57 (2009), pp. 941–971. doi: 10.1016/j.actamat.2008.10.020
  • I. Steinbach, Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 17 (2009), pp. 73001. doi: 10.1088/0965-0393/17/7/073001
  • J. Du, A. Zhang, Z. Guo, M. Yang, M. Li, F. Liu, and S. Xiong, Atomistic underpinnings for growth direction and pattern formation of hcp magnesium alloy dendrite. Acta Mater. 161 (2018), pp. 35–46. doi: 10.1016/j.actamat.2018.09.015
  • X. Fan, A. Zhang, Z. Guo, X. Wang, J. Yang, and J. Zou, Growth behavior of γ′ phase in a powder metallurgy nickel-based superalloy under interrupted cooling process. J. Mater. Sci. 54 (2019), pp. 2680–2689. doi: 10.1007/s10853-018-3002-0
  • R. Tönhardt and G. Amberg, Phase-field simulation of dendritic growth in a shear flow. J. Cryst. Growth 194 (1998), pp. 406–425. doi: 10.1016/S0022-0248(98)00687-3
  • C. Beckermann, H.J. Diepers, I. Steinbach, A. Karma, and X. Tong, Modeling melt convection in phase-field simulations of solidification. J. Comput. Phys. 154 (1999), pp. 468–496. doi: 10.1006/jcph.1999.6323
  • X. Tong, C. Beckermann, A. Karma, and Q. Li, Phase-field simulations of dendritic crystal growth in a forced flow. Phys. Rev. E 63 (2001), pp. 61601. doi: 10.1103/PhysRevE.63.061601
  • C.W. Lan and C.J. Shih, Phase field simulation of non-isothermal free dendritic growth of a binary alloy in a forced flow. J. Cryst. Growth 264 (2004), pp. 472–482. doi: 10.1016/j.jcrysgro.2004.01.016
  • C.W. Lan, C.M. Hsu, C.C. Liu, and Y.C. Chang, Adaptive phase field simulation of dendritic growth in a forced flow at various supercoolings. Phys. Rev. E 65 (2002), pp. 61601. doi: 10.1103/PhysRevE.65.061601
  • Z. Guo, J. Mi, S. Xiong, and P.S. Grant, Phase field simulation of binary alloy dendrite growth under thermal- and forced-flow fields: An implementation of the parallel–multigrid approach. Metall. Mater. Trans. B 44 (2013), pp. 924–937. doi: 10.1007/s11663-013-9861-5
  • Z. Guo, J. Mi, S. Xiong, and P.S. Grant, Phase field study of the tip operating state of a freely growing dendrite against convection using a novel parallel multigrid approach. J. Comput. Phys. 257 (2014), pp. 278–297. doi: 10.1016/j.jcp.2013.10.004
  • X. Zhang, J. Kang, Z. Guo, S. Xiong, and Q. Han, Development of a Para-AMR algorithm for simulating dendrite growth under convection using a phase-field–lattice Boltzmann method. Comput. Phys. Commun. 223 (2018), pp. 18–27. doi: 10.1016/j.cpc.2017.09.021
  • W. Miller, S. Succi, and D. Mansutti, Lattice Boltzmann method for anisotropic liquid-solid phase transition. Phys. Rev. Lett. 86 (2001), pp. 3578–3581. doi: 10.1103/PhysRevLett.86.3578
  • W. Miller, I. Rasin, and S. Succi, Lattice Boltzmann phase-field modelling of binary-alloy solidification. Physica A 362 (2006), pp. 78–83. doi: 10.1016/j.physa.2005.09.021
  • D. Medvedev and K. Kassner, Lattice Boltzmann scheme for crystal growth in external flows. Phys. Rev. E 72 (2005), pp. 56703. doi: 10.1103/PhysRevE.72.056703
  • D. Medvedev, T. Fischaleck, and K. Kassner, Influence of external flows on crystal growth: Numerical investigation. Phys. Rev. E 74 (2006), pp. 31606. doi: 10.1103/PhysRevE.74.031606
  • T. Takaki, R. Rojas, S. Sakane, M. Ohno, Y. Shibuta, T. Shimokawabe, and T. Aoki, Phase-field-lattice Boltzmann studies for dendritic growth with natural convection. J. Cryst. Growth 474 (2017), pp. 146–153. doi: 10.1016/j.jcrysgro.2016.11.099
  • S. Sakane, T. Takaki, R. Rojas, M. Ohno, Y. Shibuta, T. Shimokawabe, and T. Aoki, Multi-GPUs parallel computation of dendrite growth in forced convection using the phase-field-lattice Boltzmann model. J. Cryst. Growth 474 (2017), pp. 154–159. doi: 10.1016/j.jcrysgro.2016.11.103
  • E. Liotti, A. Lui, S. Kumar, Z. Guo, C. Bi, T. Connolley, and P.S. Grant, The spatial and temporal distribution of dendrite fragmentation in solidifying Al-Cu alloys under different conditions. Acta Mater. 121 (2016), pp. 384–395. doi: 10.1016/j.actamat.2016.09.013
  • A. Zhang, Z. Guo, Q. Wang, and S. Xiong, Three-dimensional numerical simulation of bubble rising in viscous liquids: A conservative phase-field lattice-Boltzmann study. Phys. Fluids 31 (2019), pp. 063106. doi: 10.1063/1.5096390
  • J.C. Ramirez, C. Beckermann, A. Karma, and H.J. Diepers, Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion. Phys. Rev. E 69 (2004), pp. 51607. doi: 10.1103/PhysRevE.69.051607
  • A. Karma, Phase-field formulation for quantitative modeling of alloy solidification. Phys. Rev. Lett. 87 (2001), pp. 115701. doi: 10.1103/PhysRevLett.87.115701
  • A. Zhang, Z. Guo, and S.M. Xiong, Quantitative phase-field lattice-Boltzmann study of lamellar eutectic growth under natural convection. Phys. Rev. E 97 (2018), pp. 53302. doi: 10.1103/PhysRevE.97.053302
  • A. Zhang, J. Du, Z. Guo, Q. Wang, and S. Xiong, Dependence of lamellar eutectic growth with convection on boundary conditions and geometric confinement: A phase-field lattice-Boltzmann study. Metall. Mater. Trans. B 50 (2019), pp. 517–530. doi: 10.1007/s11663-018-1479-1
  • T. Haxhimali, A. Karma, F. Gonzales, and M. Rappaz, Orientation selection in dendritic evolution. Nat. Mater. 5 (2006), pp. 660–664. doi: 10.1038/nmat1693
  • Z. Guo and S.M. Xiong, On solving the 3-D phase field equations by employing a parallel-adaptive mesh refinement (Para-AMR) algorithm. Comput. Phys. Commun. 190 (2015), pp. 89–97. doi: 10.1016/j.cpc.2015.01.016
  • A. Karma and W. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 57 (1998), pp. 4323–4349. doi: 10.1103/PhysRevE.57.4323
  • J. Du, A. Zhang, Z. Guo, M. Yang, M. Li, and S. Xiong, Mechanism of the growth pattern formation and three-dimensional morphological transition of hcp magnesium alloy dendrite. Phys. Rev. Mater. 2 (2018), pp. 83402. doi: 10.1103/PhysRevMaterials.2.083402
  • T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E.M. Viggen, The Lattice Boltzmann Method Principles and Practice, Springer, Cham, Switzerland, 2017.
  • P.L. Bhatnagar, E.P. Gross, and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94 (1954), pp. 511–525. doi: 10.1103/PhysRev.94.511
  • X. He and L. Luo, Lattice Boltzmann model for the incompressible Navier-Stokes equation. J. Stat. Phys. 88 (1997), pp. 927–944. doi: 10.1023/B:JOSS.0000015179.12689.e4
  • Z. Guo, C. Zheng, and B. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65 (2002), pp. 46308. doi: 10.1103/PhysRevE.65.046308
  • J. Du, A. Zhang, Z. Guo, M. Yang, M. Li, and S. Xiong, Atomistic determination of anisotropic surface energy-associated growth patterns of magnesium alloy dendrites. ACS Omega 2 (2017), pp. 8803–8809. doi: 10.1021/acsomega.7b01174
  • A. Zhang, Z. Guo, and S.M. Xiong, Eutectic pattern transition under different temperature gradients: A phase field study coupled with the parallel adaptive-mesh-refinement algorithm. J. Appl. Phys. 121 (2017), pp. 125101. doi: 10.1063/1.4978606
  • A. Zhang, Z. Guo, and S. Xiong, Phase-field-lattice Boltzmann study for lamellar eutectic growth in a natural convection melt. China Foundry 14 (2017), pp. 373–378. doi: 10.1007/s41230-017-7186-8
  • A. Zhang, J. Du, Z. Guo, Q. Wang, and S. Xiong, Abnormal solute distribution near the eutectic triple point. Scripta Mater. 165 (2019), pp. 64–67. doi: 10.1016/j.scriptamat.2019.02.020
  • M. Berger and I. Rigoutsos, An algorithm for point clustering and grid generation. IEEE Trans. Syst. Man Cybern. 21 (1991), pp. 1278–1286. doi: 10.1109/21.120081
  • A. Dupuis and B. Chopard, Theory and applications of an alternative lattice Boltzmann grid refinement algorithm. Phys Rev E 67 (2003), pp. 66707. doi: 10.1103/PhysRevE.67.066707
  • R.A. Johnson and D.W. Wichern, Applied Multivariate Statistical Analysis, 6th ed., Pearson Prentice Hall, Upper Saddle River, 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.