196
Views
14
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Influence of hydrogen on mechanical and thermodynamic properties of α-Nb5Si3 from first-principles calculations

, &
Pages 2957-2970 | Received 09 Feb 2019, Accepted 17 Jul 2019, Published online: 02 Aug 2019

References

  • M. Todai, K. Hagihara, K. Kishida, H. Inui and T. Nakano, Microstructure and fracture toughness in boron added NbSi2(C40)/MoSi2(C11b) duplex crystals. Scripta Mater 113 (2016), pp. 236–240. doi: 10.1016/j.scriptamat.2015.11.004
  • Y. Pan, P. Mao, H. Jiang, Y. Wan and W. Guan, Insight into the effect of Mo and Re on mechanical and thermodynamic properties of NbSi2 based silicide. Ceram. Int. 43 (2017), pp. 5274–5282. doi: 10.1016/j.ceramint.2017.01.055
  • H. Matsunoshita, K. Fujiwara, Y. Sasai, K. Kishida and H. Inui, Orientation relationships, interface structures, and mechanical properties of directionally solidified MoSi2/Mo5Si3/Mo5Si3C composites. Intermetallics 73 (2016), pp. 12–20. doi: 10.1016/j.intermet.2016.02.005
  • Y. Pan, P. Wang and C.M. Zhang, Structure, mechanical, electronic and thermodynamic properties of Mo5Si3 from first-principles calculations. Ceram. Int. 44 (2018), pp. 12357–12362. doi: 10.1016/j.ceramint.2018.04.023
  • K. Fujiwara, H. Matsnoshita, Y. Sasai, K. Kishida and H. Inui, Effects of ternary additions on the microstructure and thermal stability of directionally-solidified MoSi2/Mo5Si3 eutectic composites. Intermetallics 52 (2014), pp. 72–85. doi: 10.1016/j.intermet.2014.03.015
  • Y. Pan and W.M. Guan, Exploring the novel structure, elastic and thermodynamic properties of W3Si silicides from first-principles calculations. Ceram. Int. 45 (2019), pp. 15649–15653. doi: 10.1016/j.ceramint.2019.05.076
  • E. Erturk and T. Gurel, Ab initio study of structural, elastic, and vibrational properties of transition-metal disilicides NbSi2 and TaSi2 in hexagonal C40 structure. Physica B 537 (2018), pp. 188–193. doi: 10.1016/j.physb.2018.01.070
  • Y. Pan, W.M. Guan and Y.Q. Li, Insight into the electronic and mechanical properties of novel TMCrSi ternary silicides from first-principles calculations. Phys. Chem. Chem. Phys. 20 (2018), pp. 15863–15870. doi: 10.1039/C8CP01579A
  • Z. Sun, X. Guo, X. Tian and L. Zhou, Effects of B and Si on the fracture toughness of the Nb-Si alloys. Intermetallics 54 (2014), pp. 143–147. doi: 10.1016/j.intermet.2014.06.005
  • Y. Pan and W.M. Guan, Probing the balance between ductility and strength: Transition metal silicides. Phys. Chem. Chem. Phys. 19 (2017), pp. 19427–19433. doi: 10.1039/C7CP03182C
  • S. Wang and Y. Pan, Insight into the structures, melting points, and mechanical properties of NbSi2 from first-principles calculations. J. Am. Ceram. Soc. 102 (2019), pp. 4822–4834. doi: 10.1111/jace.16345
  • Y. Duan, Stability, elastic constants and thermodynamic properties of (α, β, γ)-Nb5Si3 phases. Rare Met. Mater. Eng. 44 (2015), pp. 18–23. doi: 10.1016/S1875-5372(15)30004-7
  • Y. Pan, S. Wang, X. Zhang and J. Jia, First-principles investigation of new structure, mechanical and electronic properties of Mo-based silicides. Ceram. Int. 44 (2018), pp. 1744–1750. doi: 10.1016/j.ceramint.2017.10.106
  • L. Su, O.L. Steffes, H. Zhang and J.H. Perepezko, An ultra-high temperature Mo-Si-B based coating for oxidation protection of NbSS/Nb5Si3 composites. Appl. Surf. Sci. 337 (2015), pp. 38–44. doi: 10.1016/j.apsusc.2015.02.061
  • Y. Pan, Prediction of new structure, phase transition, mechanical, and thermodynamic properties of Nb3Si. Adv. Eng. Mater. 19 (2017), pp. 1700099. doi: 10.1002/adem.201700099
  • N. Sekido, Y. Kimura, S. Miura and Y. Mishima, Microstructure development of unidirectionally solidified (Nb)/Nb3Si eutectic alloys. Mat Sci Eng A 444 (2007), pp. 51–57. doi: 10.1016/j.msea.2006.06.140
  • Y. Pan and W.M. Guan, Exploring the structural stability and mechanical properties of TM5SiB2 ternary silicides. Ceram. Int. 44 (2018), pp. 9893–9898. doi: 10.1016/j.ceramint.2018.03.005
  • S. Wang, Y. Pan, Y. Wu and Y. Lin, Insight into the electronic and thermodynamic properties of NbSi2 from first-principles calculations. RSC Adv. 8 (2018), pp. 28693–28699. doi: 10.1039/C8RA04959A
  • W. Xu, J. Han, C. Wang, Y. Zhou, Y. Wang, Y. Kang, B. Wen, X. Liu and Z. Liu, Temperature-dependent mechanical properties of alpha-/beta-Nb5Si3 phases from first-principles calculations. Intermetallics 46 (2014), pp. 72–79. doi: 10.1016/j.intermet.2013.10.027
  • Y. Chen, J.X. Shang and Y. Zhang, Bonding characteristics and site occupancies of alloying elements in different Nb5Si3 phases from first-principles. Phys. Rev. B 76 (2007), pp. 184204. doi: 10.1103/PhysRevB.76.184204
  • Z. Chen and Y.W. Yan, Influence of sintering temperature on microstructures of Nb/Nb5Si3 in situ composites synthesized by spark plasma sintering. J. Alloy. Compd. 413 (2006), pp. 73–76. doi: 10.1016/j.jallcom.2005.06.005
  • W. Liu and J. Sha, Effect of Nb and Nb5Si3 powder size on microstructure and fracture behavior of an Nb-16Si alloy fabricated by spark plasma sintering. Metall. Mater. Trans. A 45 (2014), pp. 4316–4323. doi: 10.1007/s11661-014-2378-y
  • I. Papadimitriou, C. Utton and P. Tsakiropoulos, The impact of Ti and temperature on the stability of Nb5Si3 phases: A first-principles study. Sci Technol Adv Mat 18 (2017), pp. 467–479. doi: 10.1080/14686996.2017.1341802
  • Y. Pan, Y. Lin, H. Wang and C. Zhang, Vacancy induced brittle-to-ductile transition of Nb5Si3 alloy from first-principles. Mater Design 86 (2015), pp. 259–265. doi: 10.1016/j.matdes.2015.07.099
  • S.M. Teus, D.G. Savvakin, O.M. Ivasishin and V.G. Gavriljuk, Hydrogen migration and hydrogen-dislocation interaction in austenitic steels and titanium alloy in relation to hydrogen embrittlement. Int J Hydrogen Energ 42 (2017), pp. 2424–2433. doi: 10.1016/j.ijhydene.2016.09.212
  • Y. Pan, Theoretical discovery of high capacity hydrogen storage metal tetrahydrides. Int J Hydrogen Energ (2019). doi:10.1016/j.ijhydene.2019.05.145.
  • G. Stenerud, S. Wenner, J.S. Olsen and R. Johnsen, Effect of different microstructural features on the hydrogen embrittlement susceptibility of alloy 718. Int J Hydrogen Energ 43 (2018), pp. 6765–6776. doi: 10.1016/j.ijhydene.2018.02.088
  • M. Koyama, E. Akiyama, Y.K. Lee, D. Raabe and K. Tsuzaki, Overview of hydrogen embrittlement in high-Mn steels. Int J Hydrogen Energ 42 (2017), pp. 12706–12723. doi: 10.1016/j.ijhydene.2017.02.214
  • S.V. Meschel and O.J. Kleppa, Standard enthalpies of formation of some 4d transition metal silicides by high temperature direct synthesis calorimetry. J Alloy Compd 274 (1998), pp. 193–200. doi: 10.1016/S0925-8388(98)00504-0
  • Y. Pan, Y. Lin, Q. Xue, C. Ren and H. Wang, Relationship between Si concentration and mechanical properties of Nb-Si compounds: A first-principles study. Mater Design 89 (2016), pp. 676–683. doi: 10.1016/j.matdes.2015.10.028
  • M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark and M.C. Payne, First-principles simulation: Ideas, illustrations and the CASTEP code. J Phys Condens Mat 14 (2002), pp. 2717–2744. doi: 10.1088/0953-8984/14/11/301
  • Y. Pan, Y.Q. Li, Q.H. Zheng and Y. Xu, Point defect of titanium sesquioxide Ti2O3 as the application of next generation Li-ion batteries. J Alloy Compd 786 (2019), pp. 621–626. doi: 10.1016/j.jallcom.2019.02.054
  • J.P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45 (1992), pp. 13244–13249. doi: 10.1103/PhysRevB.45.13244
  • Y. Pan and W. Guan, Prediction of new stable structure, promising electronic and thermodynamic properties of MoS3: Ab initio calculations. J. Power Sources 325 (2016), pp. 246–251. doi: 10.1016/j.jpowsour.2016.06.044
  • D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41 (1990), pp. 7892–7895. doi: 10.1103/PhysRevB.41.7892
  • Y. Pan, Role of S-S interlayer spacing on the hydrogen storage mechanism of MoS2. Int J Hydrogen Energ 43 (2018), pp. 3087–3091. doi: 10.1016/j.ijhydene.2017.12.185
  • Y. Pan and W.M. Guan, Prediction of new phase and electrochemical properties of Li2S2 for the application of Li-S batteries. Inorg. Chem. 57 (2018), pp. 6617–6623. doi: 10.1021/acs.inorgchem.8b00747
  • D. Liu, W. Bao and Y. Duan, Predictions of phase stabilities, electronic structures and optical properties of potential superhard WB3. Ceram. Int. 45 (2019), pp. 3341–3349. doi: 10.1016/j.ceramint.2018.10.247
  • Y. Pan and B. Zhou, Zrb2: Adjusting the phase structure to improve the brittle fracture and electronic properties. Ceram. Int. 43 (2017), pp. 8763–8768. doi: 10.1016/j.ceramint.2017.04.007
  • Y. Pan and M. Wen, Noble metals enhanced catalytic activity of anatase TiO2 for hydrogen evolution reaction. Int J Hydrogen Energ 43 (2018), pp. 22055–22063. doi: 10.1016/j.ijhydene.2018.10.093
  • S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45 (1954), pp. 823–843. doi: 10.1080/14786440808520496
  • Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu and J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys Rev B 76 (2007), pp. 054115. doi: 10.1103/PhysRevB.76.054115
  • Y. Li, C. Liu, H. Yu, F. Wang and X. Zhang, Anisotropy of the elasticity, thermal conductivity and optical parameters of Cmcm and Pmcn BiMg2VO6 ceramics. Vacuum 159 (2019), pp. 218–227. doi: 10.1016/j.vacuum.2018.10.040
  • Y. Pan, Y. Li and Q. Zheng, Influence of Ir concentration on the structure, elastic modulus and elastic anisotropy of Nb-Ir based compounds from first-principles calculations. J Alloy Compd 789 (2019), pp. 860–866. doi: 10.1016/j.jallcom.2019.03.083
  • X. Zhang, W. Huang, H. Ma, H. Yu and W. Jiang, First-principles prediction of the physical properties of ThM2Al20 (M = Ti, V, Cr) intermetallics. Solid State Commun. 284–286 (2018), pp. 75–83. doi: 10.1016/j.ssc.2018.09.008
  • Y. Pan, Rual2: Structure, electronic and elastic properties from first-principles. Mater. Res. Bull. 93 (2017), pp. 56–62. doi: 10.1016/j.materresbull.2017.04.041
  • W. Bao, D. Liu and Y. Duan, A first-principles prediction of anisotropic elasticity and thermal properties of potential superhard WB3. Ceram. Int. 44 (2018), pp. 14053–14062. doi: 10.1016/j.ceramint.2018.05.002
  • Y. Pan, S. Wang and C. Zhang, Ab-initio investigation of structure and mechanical properties of PtAlTM ternary alloy. Vacuum 151 (2018), pp. 205–208. doi: 10.1016/j.vacuum.2018.02.027
  • R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. London, Sect. A 65 (1952), pp. 349–354. doi: 10.1088/0370-1298/65/5/307
  • Y. Pan and M. Wen, The influence of vacancy on the mechanical properties of IrAl coating: First-principles calculations. Thin Solid Films 664 (2018), pp. 46–51. doi: 10.1016/j.tsf.2018.08.028
  • Y. Pan, First-principles investigation of the new phases and electrochemical properties of MoSi2 as the electrode materials of lithium ion battery. J Alloy Compd 779 (2019), pp. 813–820. doi: 10.1016/j.jallcom.2018.11.352
  • H. Yang, H. Sun, Q. Li, P. Li, K. Song, B. Song and L. Wang, Structural, electronic, optical and lattice dynamic properties of the different WO3 phases: First-principle calculation. Vacuum 164 (2019), pp. 411–420. doi: 10.1016/j.vacuum.2019.03.053
  • Y. Pan, J. Zhang, C. Jin and X. Chen, Influence of vacancy on structural and elastic properties of NbSi2 from first-principles calculations. Mater Design 108 (2016), pp. 13–18. doi: 10.1016/j.matdes.2016.06.085
  • S. Wang, Y. Pan and Y. Lin, First-principles study of the effect of Cr and Al on the oxidation resistance of WSi2. Chem. Phys. Lett. 698 (2018), pp. 211–217. doi: 10.1016/j.cplett.2018.03.030
  • Y. Pan and C. Jin, Vacancy-induced mechanical and thermodynamic properties of B2-RuAl. Vacuum 143 (2017), pp. 165–168. doi: 10.1016/j.vacuum.2017.06.013
  • M.T. Rahman, E. Haque and M.A. Hossain, Elastic, electronic and thermoelectric properties of Sr3MN (M = Sb, Bi) under pressure. J Alloy Compd 783 (2019), pp. 593–600. doi: 10.1016/j.jallcom.2018.12.339
  • Y. Pan and M. Wen, Ab-initio calculations of mechanical and thermodynamic properties of TM (transition metal: 3d and 4d)-doped Pt3Al. Vacuum 156 (2018), pp. 419–426. doi: 10.1016/j.vacuum.2018.08.010
  • X. Tao, H. Chen, X. Tong, Y. Ouyang, P. Jund and J.C. Tedenac, Structural, electronic and elastic properties of V5Si3 phases from first-principles calculations. Comp Mater Sci 53 (2012), pp. 169–174. doi: 10.1016/j.commatsci.2011.09.030

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.