464
Views
12
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effects of pulsed laser surface treatments on microstructural characteristics and hardness of CrCoNi medium-entropy alloy

ORCID Icon, , , , , & show all
Pages 3015-3031 | Received 16 May 2019, Accepted 22 Jul 2019, Published online: 05 Aug 2019

References

  • Z. Li, S. Zhao, R.O. Ritchie, and M.A. Meyers, Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog. Mater. Sci. 102 (2019), pp. 296–345. doi: 10.1016/j.pmatsci.2018.12.003
  • D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122 (2017), pp. 448–511. doi: 10.1016/j.actamat.2016.08.081
  • H.Y. Diao, R. Feng, K.A. Dahmen, and P.K. Liaw, Fundamental deformation behavior in high-entropy alloys: An overview. Curr. Opin. Solid State Mater. Sci. 21 (2017), pp. 252–266. doi: 10.1016/j.cossms.2017.08.003
  • Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang, High-entropy alloy: Challenges and prospects. Mater. Today 19 (2016), pp. 349–362. doi: 10.1016/j.mattod.2015.11.026
  • Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61 (2014), pp. 1–93. doi: 10.1016/j.pmatsci.2013.10.001
  • Y. Qiu, S. Thomas, D. Fabijanic, A.J. Barlow, H.L. Fraser, and N. Birbilis, Microstructural evolution, electrochemical and corrosion properties of AlxCoCrFeNiTiy high entropy alloys. Mater. Des 170 (2019), pp. 107698. doi: 10.1016/j.matdes.2019.107698
  • Y. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, and P.K. Liaw, Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corros. Sci. 119 (2017), pp. 33–45. doi: 10.1016/j.corsci.2017.02.019
  • Y.L. Chou, Y.C. Wang, J.W. Yeh, and H.C. Shih, The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments. Corros. Sci. 52 (2010), pp. 1026–1034. doi: 10.1016/j.corsci.2009.11.028
  • N.A.P.K. Kumar, C. Li, K.J. Leonard, H. Bei, and S.J. Zinkle, Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater. 113 (2016), pp. 230–244. doi: 10.1016/j.actamat.2016.05.007
  • P.J. Shi, W.L. Ren, T.X. Zheng, Z.M. Ren, X.L. Hou, J.C. Peng, P.F. Hu, Y.F. Gao, Y.B. Zhong, and P.K. Liaw, Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nat. Commun. 10 (2019), pp. 489. doi: 10.1038/s41467-019-08460-2
  • C. Lee, G. Song, M.C. Gao, R. Feng, P. Chen, J. Brechtl, Y. Chen, K. An, W. Guo, J.D. Poplawsky, S. Li, A.T. Samaei, W. Chen, A. Hu, H. Choo, and P.K. Liaw, Lattice distortion in a strong and ductile refractory high-entropy alloy. Acta Mater. 160 (2018), pp. 158–172. doi: 10.1016/j.actamat.2018.08.053
  • Z. Zhang, M.M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, and R.O. Ritchie, Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 6 (2015), pp. 10143. doi: 10.1038/ncomms10143
  • S. Niu, H. Kou, Y. Zhang, J. Wang, and J. Li, The characteristics of serration in Al0.5CoCrFeNi high entropy alloy. Mater. Sci. Eng., A 702 (2017), pp. 96–103. doi: 10.1016/j.msea.2017.05.075
  • J. Brechtl, S.Y. Chen, X. Xie, Y. Ren, J.W. Qiao, P.K. Liaw, and S.J. Zinkle, Towards a greater understanding of serrated flows in an Al-containing high-entropy-based alloy. Int. J. Plast. 115 (2019), pp. 71–92. doi: 10.1016/j.ijplas.2018.11.011
  • S.Y. Chen, W.D. Li, X. Xie, J. Brechtl, B.L. Chen, P.Z. Li, G.F. Zhao, F.Q. Yang, J.W. Qiao, and P.K. Liaw, Nanoscale serration and creep characteristics of Al0.5CoCrCuFeNi high-entropy alloys. J. Alloy. Compd. 752 (2018), pp. 464–475. doi: 10.1016/j.jallcom.2018.04.137
  • Z. Wu, H. Bei, F. Otto, G.M. Pharr, and E.P. George, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46 (2014), pp. 131–140. doi: 10.1016/j.intermet.2013.10.024
  • G.D. Sathiaraj, M.Z. Ahmed, and P.P. Bhattacharjee, Microstructure and texture of heavily cold-rolled and annealed fcc equiatomic medium to high entropy alloys. J. Alloy. Compd. 664 (2016), pp. 109–119. doi: 10.1016/j.jallcom.2015.12.172
  • G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E.P. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater. 128 (2017), pp. 292–303. doi: 10.1016/j.actamat.2017.02.036
  • Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C.T. Liu, and J.J. Kai, Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Mater. 138 (2017), pp. 72–82. doi: 10.1016/j.actamat.2017.07.029
  • B. Gan, J.M. Wheeler, Z.N. Bi, L. Liu, J. Zhang, and H.Z. Fu, Superb cryogenic strength of equiatomic CrCoNi derived fromgradient hierarchical microstructure. J. Mater. Sci. Technol. 35 (2019), pp. 957–961. doi: 10.1016/j.jmst.2018.12.002
  • J. Miao, C.E. Slone, T.M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.M. Pharr, and M.J. Mills, The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy. Acta Mater. 132 (2017), pp. 35–48. doi: 10.1016/j.actamat.2017.04.033
  • B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George, and R.O. Ritchie, Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7 (2016), pp. 10602. doi: 10.1038/ncomms10602
  • L. Chai, K. Chen, Y. Zhi, K.L. Murty, L.-Y. Chen, and Z. Yang, Nanotwins induced by pulsed laser and their hardening effect in a Zr alloy. J. Alloy. Compd. 748 (2018), pp. 163–170. doi: 10.1016/j.jallcom.2018.03.126
  • Y. Chi, G. Gu, H. Yu, and C. Chen, Laser surface alloying on aluminum and its alloys: A review. Opt. Laser. Eng. 100 (2018), pp. 23–37. doi: 10.1016/j.optlaseng.2017.07.006
  • F. Weng, C. Chen, and H. Yu, Research status of laser cladding on titanium and its alloys: A review. Mater. Des. 58 (2014), pp. 412–425. doi: 10.1016/j.matdes.2014.01.077
  • Y. Zhao, C. Liu, Y. Guo, Y. Liu, J. Zhang, Y. Luo, and D. Tang, Influence of minor boron on the microstructures of a second generation Ni-based single crystal superalloy. Prog. Nat. Sci. Mater. Int. 28 (2018), pp. 483–488. doi: 10.1016/j.pnsc.2018.06.001
  • L. Chai, H. Wu, Z. Zheng, H. Guan, H. Pan, N. Guo, and B. Song, Microstructural characterization and hardness variation of pure Ti surface-treated by pulsed laser. J. Alloy. Compd. 741 (2018), pp. 116–122. doi: 10.1016/j.jallcom.2018.01.113
  • L. Chai, B. Chen, S. Wang, N. Guo, C. Huang, Z. Zhou, and W. Huang, Microstructural changes of Zr702 induced by pulsed laser surface treatment. Appl. Surf. Sci. 364 (2016), pp. 61–68. doi: 10.1016/j.apsusc.2015.12.105
  • S. Chen, A.D. Usta, and M. Eriten, Microstructure and wear resistance of Ti6Al4 V surfaces processed by pulsed laser. Surf. Coat. Technol. 315 (2017), pp. 220–231. doi: 10.1016/j.surfcoat.2017.02.031
  • L. Chai, H. Wu, S. Wang, K. Chen, T. Wang, and J. Xia, Characterization of microstructure and hardness of a Zr-2.5Nb alloy surface-treated by pulsed laser. Mater. Chem. Phys. 198 (2017), pp. 303–309. doi: 10.1016/j.matchemphys.2017.06.032
  • B.S. Yilbas, H. Ali, N. Al-Aqeeli, and C. Karatas, Laser treatment of Inconel 718 alloy and surface characteristics. Opt. Laser Technol. 78 (2016), pp. 153–158. doi: 10.1016/j.optlastec.2015.11.006
  • N. Yasavol, A. Abdollah-zadeh, M. Ganjali, and S.A. Alidokht, Microstructure and mechanical behavior of pulsed laser surface melted AISI D2 cold work tool steel. Appl. Surf. Sci. 265 (2013), pp. 653–662. doi: 10.1016/j.apsusc.2012.11.070
  • F.J. Humphreys, Review-Grain and subgrain characterisation by electron backscatter diffraction. J. Mater. Sci. 36 (2001), pp. 3833–3854. doi: 10.1023/A:1017973432592
  • L. Chai, S. Yuan, W. Huang, X. Yang, F. Wang, D. Wang, and J. Wang, Microstructural characterization of Inconel 718 alloy after pulsed laser surface treatment at different powers. T. Nonferr. Metal. Soc. 28 (2018), pp. 1530–1537. doi: 10.1016/S1003-6326(18)64794-6
  • L. Chai, B. Chen, S. Wang, Z. Zhou, and W. Huang, Microstructural characteristics of a commercially pure Zr treated by pulsed laser at different powers. Mater. Charact. 110 (2015), pp. 25–32. doi: 10.1016/j.matchar.2015.10.008
  • H. Qin, V. Fallah, Q. Dong, M. Brochu, M.R. Daymond, and M. Gallerneault, Solidification pattern, microstructure and texture development in laser Powder Bed Fusion (LPBF) of Al10SiMg alloy. Mater. Charact. 145 (2018), pp. 29–38. doi: 10.1016/j.matchar.2018.08.025
  • V. Fallah, M. Alimardani, S.F. Corbin, and A. Khajepour, Temporal development of melt-pool morphology and clad geometry in laser powder deposition. Comp. Mater. Sci. 50 (2011), pp. 2124–2134. doi: 10.1016/j.commatsci.2011.02.018
  • J.D. Hunt, Steady state columnar and equiaxed growth of dendrites and eutectic. Mater. Sci. Eng. 65 (1984), pp. 75–83. doi: 10.1016/0025-5416(84)90201-5
  • W.M. Tucho, P. Cuvillier, A. Sjolyst-Kverneland, and V. Hansen, Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment. Mater. Sci. Eng., A 689 (2017), pp. 220–232. doi: 10.1016/j.msea.2017.02.062
  • Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, and T. Zhu, Additively manufactured hierarchical stainless steels with high strength and ductility. Nat. Mater. 17 (2017), pp. 63–71. doi: 10.1038/nmat5021
  • Y. Jin, B. Lin, M. Bernacki, G.S. Rohrer, A.D. Rollett, and N. Bozzolo, Annealing twin development during recrystallization and grain growth in pure nickel. Mater. Sci. Eng., A 597 (2014), pp. 295–303. doi: 10.1016/j.msea.2014.01.018
  • S. Yang, Z.J. Wang, H. Kokawa, and Y.S. Sato, Grain boundary engineering of 304 austenitic stainless steel by laser surface melting and annealing. J. Mater. Sci. 42 (2007), pp. 847–853. doi: 10.1007/s10853-006-0063-2
  • D.A. Hughes and N. Hansen, Exploring the Limit of dislocation based Plasticity in Nanostructured metals. Phys. Rev. Lett. 112 (2014), pp. 135504. doi: 10.1103/PhysRevLett.112.135504
  • C.S. Pande, B.B. Rath, and M.A. Imam, Effect of annealing twins on Hall–Petch relation in polycrystalline materials. Mater. Sci. Eng., A 367 (2004), pp. 171–175. doi: 10.1016/j.msea.2003.09.100
  • T. Ezaz, M.D. Sangid, and H. Sehitoglu, Energy barriers associated with slip–twin interactions. Philos. Mag. 91 (2011), pp. 1464–1488. doi: 10.1080/14786435.2010.541166
  • L. Rémy, Twin-slip interaction in f.c.c. crystals. Acta Metall. 25 (1977), pp. 711–714. doi: 10.1016/0001-6160(77)90013-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.