141
Views
2
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

First-principles calculations to investigate half-metallic ferromagnetism in Zn0.50Ti0.50S alloy by using DFT + U calculations

, ORCID Icon, , ORCID Icon, &
Pages 3000-3014 | Received 21 May 2019, Accepted 30 Jul 2019, Published online: 08 Aug 2019

References

  • S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger, Spintronics: A spin-based electronics vision for the future, Science 294 (2001), pp. 1488–1495. doi: 10.1126/science.1065389
  • G.A. Prinz, Magnetoelectronics, Science 282 (1998), pp. 1660–1663. doi: 10.1126/science.282.5394.1660
  • A. Matsuda, S. Akiba, M. Kasahara, T. Watanabe, Y. Akita, Y. Kitamoto, T. Tojo, H. Kawaji, T. Atake, K. Koyama, et al., Fabrication of ferromagnetic Ni epitaxial thin film by way of hydrogen reduction of NiO, Thin Solid Films 516 (2008), pp. 3873–3876. doi: 10.1016/j.tsf.2007.07.133
  • M.I. Miah and E.M. Gray, Spin transport and spin current detection in semiconductors, Solid State Sci. 10 (2008), pp. 205–210. doi: 10.1016/j.solidstatesciences.2007.07.038
  • G.Q. Pei, C. Xia, Y. Dong, B. Wu, T. Wangd, and J. Xua, Studies of magnetic interactions in Mn-doped β-Ga2O3 from first-principles calculations, Scr. Mater. 58 (2008), pp. 943–946. doi: 10.1016/j.scriptamat.2008.01.059
  • Q. Li, X. Gong, C. Wang, J. Wang, K. Ip, and S. Hark, Size-dependent periodically twinned ZnSe nanowires, Adv. Mater 16 (2004), pp. 1436–1440. doi: 10.1002/adma.200306648
  • W.E. Pickett and J.S. Moodera, Half metallic magnets, Phys. Today 54 (2001), pp. 39–44. doi: 10.1063/1.1381101
  • R.A. de Groot, F.M. Mueller, P.G. van Engen, and K.H.J. Buschow, New class of materials: Half-metallic ferromagnets, Phys. Rev. Lett. 50 (1983), pp. 2024–2027. doi: 10.1103/PhysRevLett.50.2024
  • F.J. Jedema, A.T. Filip, and B.V. Wees, Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve, Nature 410 (2001), pp. 345–348. doi: 10.1038/35066533
  • S.P. Lewis, P.B. Allen, and T. Sasaki, Band structure and transport properties of CrCO2, Phys. Rev. B. 55 (1997), pp. 10253–10260. doi: 10.1103/PhysRevB.55.10253
  • I. Galanakis, Orbital magnetism in the half-metallic Heusler alloys, Phys. Rev. B. 71 (2005), p. 012413. doi: 10.1103/PhysRevB.71.012413
  • S. Wurmehl, G.H. Fecher, H.C. Kandpal, V. Ksenofontov, C. Felser, and H.-J. Lin, Investigation of Co2FeSi: The Heusler compound with highest Curie temperature and magnetic moment, Appl. Phys. Lett 88 (2006), p. 032503. doi: 10.1063/1.2166205
  • N. Bouzouira, D. Bensaid, M. Ameri, Y. Azzaz, N. Moulay, A. Zenati, I. Ameri, D. Hachemane, D. Varshney, U. Hashim, et al., Structural, electronic and thermodynamic properties of half-metallic Co2CrZ(Z=Ga, Ge and As) alloys: First-principles calculations, Mater. Sci. Semicond. Process. 38 (2015), pp. 126–136. doi: 10.1016/j.mssp.2015.03.026
  • R.J. Soulen Jr, J.M. Byers, M.S. Osofsky, B. Nadgorny, T. Ambrose, A. Barry, and J.M.D. Coey, Measuring the spin polarization of a metal with a superconducting point contact, Science 282 (1998), pp. 85–88. doi: 10.1126/science.282.5386.85
  • J.H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Direct evidence for a half-metallic ferromagnet, Nature (Lond) 392 (1998), pp. 794–796. doi: 10.1038/33883
  • K.L. Kobayashi, T. Kimura, H. Sawada, K. Terakuraand, and Y. Tokura, Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure, Nature 395 (1998), pp. 677–680. doi: 10.1038/27167
  • S. Picozzi, T. Shishidou, A.J. Freeman, and B. Delly, First-principles prediction of half-metallic ferromagnetic semiconductors: V- and Cr-doped BeTe, Phys. Rev. B. 67 (2003), p. 165203. doi: 10.1103/PhysRevB.67.165203
  • S.M. Alay-e-Abbas, K. Wong, N.A. Noor, A. Shaukat and Y. Lei, An ab-initio study of the structural, electronic and magnetic properties of half-metallic ferromagnetism in Cr-doped BeSe and BeTe, Solid. State. Sci. 14 (2012), pp. 1525–1535. doi: 10.1016/j.solidstatesciences.2012.08.020
  • T. Jungwirth, J. Sinova, J. Mašek, J. Kučera, and A.H. Mac Donald, Theory of ferromagnetic (III,Mn)V semiconductors, Rev. Mod. Phys. 78 (2006), pp. 809–864. doi: 10.1103/RevModPhys.78.809
  • G. Rahman, S. Cho, and S.C. Hong, Half metallic ferromagnetism of Mn doped AlSb: A first principles study, Phys. Status Solidi B. 244 (2007), pp. 4435–4438. doi: 10.1002/pssb.200777225
  • M. Ameri, A. Touia, R. Khenata, Y. Al-Douri, and H. Baltache, Structural and optoelectronic properties of NiTiX and CoVX (X=Sb and Sn) half-Heusler compounds: An ab initio study, Optik. 124 (2013), pp. 570–574. doi: 10.1016/j.ijleo.2011.12.052
  • A. Missoum, T. Seddik, G. Murtaza, R. Khenata, A. Bouhemadou, Y. Al-Douri, A. Abdiche, H. Meradji, and H. Baltache, Ab initio study of the structural and optoelectronic properties of the half-Heusler CoCrZ(Z=Al, Ga), Can. J. Phys. 92 (2014), pp. 1105–1112. doi: 10.1139/cjp-2013-0474
  • H.S. Saini, M. Singh, A.H. Reshak, and M.K. Kashyap, Emergence of half metallicity in Cr-doped GaP dilute magnetic semiconductor compound within solubility limit, J. Alloys Compd. 536 (2012), pp. 214–218. doi: 10.1016/j.jallcom.2012.04.122
  • Y. Liu and B.-G. Liu, First-principles study of half-metallic ferromagnetism and structural stability of CrxZn1−xTe, J. Phys. D. Appl. Phys. 40 (2007), pp. 6791–6796. doi: 10.1088/0022-3727/40/21/045
  • B. Amin, S. Arif, I. Ahmad, M. Maqbool, R. Ahmad, S. Goumri-Said and K. Prisbray, Cr-doped III–V nitrides: Potential candidates for spintronics, J. Electron. Mat. 40 (2011), pp. 1428–1436. doi: 10.1007/s11664-011-1539-7
  • T.M. Giebultowicz, P. Klosowski, N. Samarth, and J.K. Furdyna, Neutron-diffraction studies of zinc-blende MnTe epitaxial films and MnTe/ZnTe superlattices: The effect of strain and dilution on a strongly frustrated fcc antiferromagnet, Phys. Rev. B. 48 (1993), pp. 12817–12833. doi: 10.1103/PhysRevB.48.12817
  • H. Saito, V. Zayets, S. Yamagata, and K. Ando, Room-temperature ferromagnetism in a II-VI diluted magnetic semiconductor Zn1–xCrxTe, Phys. Rev. Lett. 90 (2003), p. 207202. doi: 10.1103/PhysRevLett.90.207202
  • M. El Amine Monir, H. Baltache, G. Murtaza, R. Khenata, W.K. Ahmed, A. Bouhemadou, S. Bin Omran, and T. Seddik, Spin-polarized structural, elastic, electronic and magnetic properties of half-metallic ferromagnetism in V-doped ZnSe, J. Magn. Magn. Mater. 374 (2015), pp. 50–60. doi: 10.1016/j.jmmm.2014.08.014
  • M. El Amine Monir, H. Baltache, R. Khenata, G. Murtaza, S. Azam, A. Bouhemadou, Y. Al-Douri, S. Bin Omran, and R. Ali, First-principles calculations of a half-metallic ferromagnet zinc blende Zn 1−x V x Te, J. Magn. Magn. Mater. 378 (2015), pp. 41–49. doi: 10.1016/j.jmmm.2014.10.070
  • A. Bennadji, M. Ameri, D. Bensaid, Y. Azaz, B. Doumi, Y. Al-Douri, and F. Benzoudji, Half-metallic magnetism of quaternary Heusler compounds Co2Fe x Mn1−x Si(x=0,0.5, and 1.0): First-principles calculations, J. Supercond. Nov. Magn. 29 (2016), pp. 277–283. doi: 10.1007/s10948-015-3277-1
  • M. El Amine Monir, H. Baltach, A. Abdiche, Y. Al-Douri, R. Khenata, S. Bin Omran, X. Wang, D.P. Rai, A. Bouhemadou, W.K. Ahmed, et al., Doping-induced half-metallic ferromagnetism in vanadium and chromium-doped alkali oxides K2O and Rb2O: Ab initio method, J. Supercond. Nov. Magn. 30 (2017), pp. 2197–2210. doi: 10.1007/s10948-017-4021-9
  • O. Amrich, M. El Amine Monir, H. Baltach, S. Bin Omran, X.-W. Sun, X. Wang, Y. Al-Douri, A. Bouhemadou, and R. Khenata, Half-metallic ferrimagnetic characteristics of Co2YZ (Z=P, As, Sb, and Bi) new full-Heusler alloys: A DFT study, J. Supercond. Nov. Magn. 31 (2018), pp. 241–250. doi: 10.1007/s10948-017-4206-2
  • M. El Amine Monir, R. Khenata, G. Murtaza, H. Baltache, A. Bouhemadou, S. Azam, Y. Al-Douri, S. Bin Omran, and H. Ud Din, Half-metallic ferromagnetism in Be1−x V x Te alloys: an Ab-initio study, Indian J. Phys. 89 (2015), pp. 1251–1263. doi: 10.1007/s12648-015-0696-6
  • Y. Chen, W. Mi, J. Yang, Q. Song, H. Yan, T. Wei, and Y. Guo, Electronic structures and magnetic properties in Ti-doped ZnS, Solid State Commun. 205 (2015), pp. 9–13. doi: 10.1016/j.ssc.2014.12.018
  • C.P. Chen, J.X. Xie, and J.F. Wang, First-principle study of the electronic and optical properties of Ti doped ZnS, Adv. Mater. Res. 430–432 (2012), pp. 173–176. doi: 10.4028/www.scientific.net/AMR.430-432.173
  • H. Naz, R.N. Ali, X. Zhu, and B. Xiang, Effect of Mo and Ti doping concentration on the structural and optical properties of ZnS nanoparticles, Physica E. 100 (2018), pp. 1–6. doi: 10.1016/j.physe.2018.02.023
  • K.M. Wong, S.M. Alay-e-Abbas, A. Shaukat, Y. Fang, and Y. Lei, First-principles investigation of the size-dependent structural stability and electronic properties of O-vacancies at the ZnO polar and non-polar surfaces, J. Appl. Phys. 113 (2013), p. 014304. doi: 10.1063/1.4772647
  • K.M. Wong, S.M. Alay-e-Abbas, Y. Fang, A. Shaukat, and Y. Lei, Spatial distribution of neutral oxygen vacancies on ZnO nanowire surfaces: An investigation combining confocal microscopy and first principles calculations, J. Appl. Phys. 114 (2013), p. 034901. doi: 10.1063/1.4813517
  • P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (1964), pp. B864–B871. doi: 10.1103/PhysRev.136.B864
  • P. Blaha, K. Schwarz, P. Sorantin, and S.K. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems, Comput. Phys. Commun. 59 (1990), pp. 339–415. doi: 10.1016/0010-4655(90)90187-6
  • J.P. Perdew, S. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk, and G.A. Sawatzky, Density-functional theory and NiO photoemission spectra, Phys. Rev. B. 48 (1993), pp. 16929–16934. doi: 10.1103/PhysRevB.48.16929
  • O. Gunnarsson, O.K. Andersen, O. Jepsen, and J. Zaanen, Density-functional calculation of the parameters in the Anderson model: Application to Mn in CdTe, Phys. Rev. B. 39 (1989), pp. 1708–1722. doi: 10.1103/PhysRevB.39.1708
  • D.P. Rai and R.K. Thapa, An abinitio study of the half-metallic properties of Co2TGe (T=Sc, Ti, V, Cr, Mn, Fe): LSDA+U method, J. Korean Phys. Soc. 62 (2013), pp. 1652–1660. doi: 10.3938/jkps.62.1652
  • N.A. Noor, S. Ali, and A. Shaukat, First principles study of half-metallic ferromagnetism in Cr-doped CdTe, J. Phys. Chem. Solids 72 (2011), pp. 836–841. doi: 10.1016/j.jpcs.2011.04.008
  • M. Sajjad, H.X. Zhang, N.A. Noor, S.M. Alay-e-Abbas, A. Shaukat, and Q. Mahmood, Study of half-metallic ferromagnetism in V-doped CdTe alloys by using first-principles calculations, J. Magn. Magn. Mater. 343 (2013), pp. 177–183. doi: 10.1016/j.jmmm.2013.04.045
  • F.D. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. 30 (1944), pp. 244–247. doi: 10.1073/pnas.30.9.244
  • S.L. Shang, Y. Wang, D. Kim, and Z.-K. Liu, First-principles thermodynamics from phonon and Debye model: Application to Ni and Ni3Al, Comput. Mater. Sci. 47 (2010), pp. 1040–1048. doi: 10.1016/j.commatsci.2009.12.006
  • J. Wang and Y. Zhou, Dependence of elastic stiffness on electronic band structure of nanolaminate M2AlC(M=Ti,V,Nb, and Cr) ceramics, Phys. Rev. B. 69(21) (2004), p. 214111. doi: 10.1103/PhysRevB.69.214111
  • G. Chen, X.Q. Wang, K. Fu, X. Rong, H. Hashimoto, B.S. Zhang, F.J. Xu, N. Tang, A. Yoshikawa, W.K. Ge, et al., Multi-bands photoconductive response in AlGaN/GaN multiple quantum wells, Appl. Phys. Lett. 104(17) (2014), p. 172108. doi: 10.1063/1.4874982
  • A. Yakoubi, O. Baraka, and B. Bouhafs, Structural and electronic properties of the Laves phase based on rare earth type BaM2 (M=Rh, Pd, Pt), Results Phys. 2 (2012), pp. 58–65. doi: 10.1016/j.rinp.2012.06.001
  • K.L. Yao, G.Y. Gao, Z.L. Liu, and L. Zhu, Half-metallic ferromagnetism of zinc-blende CrS and CrP: A first-principles pseudopotential study, Solid State Commun. 133 (2005), pp. 301–304. doi: 10.1016/j.ssc.2004.11.016
  • G.Y. Gao, K.L. Yao, E. Sasioglu, L.M. Sandratskii, Z.L. Liu, and J.L. Jiang, Half-metallic ferromagnetism in zinc-blende CaC,SrC, and BaC from first principles, Phys. Rev. B. 75 (2007), p. 174442. doi: 10.1103/PhysRevB.75.174442
  • A. Zunger, Solid state physics, Solid State Phys. 39 (1986), pp. 275–464. doi: 10.1016/S0081-1947(08)60371-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.