235
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Density evolution of atomic vacancies in copper single crystals during initial stage of fatigue deformation

ORCID Icon &
Pages 3032-3058 | Received 05 May 2019, Accepted 08 Aug 2019, Published online: 29 Aug 2019

Reference

  • S. Suresh, Fatigue of Materials, 2nd ed. Cambridge university press, Cambridge, 2006.
  • T. Fujii, T. Kajita, T. Miyazawa and S. Arai, Characterization of dislocation microstructures in cyclically deformed [001] copper single crystals using high voltage scanning transmission electron microscopy. Mater. Charact 136 (2018), pp. 206–211. doi: 10.1016/j.matchar.2017.12.026
  • H. Mughrabi, The cyclic hardening and saturation behaviour of copper single crystals. Mater. Sci. Eng 33 (1978), pp. 207–223. doi: 10.1016/0025-5416(78)90174-X
  • L.M. Brown, Cracks and extrusions caused by persistent slip bands. Phil. Mag 93 (2013), pp. 3809–3820. doi: 10.1080/14786435.2013.798048
  • U. Essmann, U. Gösele and H. Mughrabi, A model of extrusions and intrusions in fatigued metals I. Point-defect production and the growth of extrusions, Philos. Mag. A Phys. Condens. Matter. Struct. Defects Mech. Prop 44 (1981), pp. 405–426.
  • J. Man, P. Klapetek, O. Man, A. Weidner, K. Obrtlík and J. Polák, Extrusions and intrusions in fatigued metals. Part 2. AFM and EBSD study of the early growth of extrusions and intrusions in 316L steel fatigued at room temperature. Philos. Mag. 89 (2009), pp. 1337–1372. doi: 10.1080/14786430902917624
  • J. Polák, On the role of point defects in fatigue crack initiation. Mater. Sci. Eng 92 (1987), pp. 71–80. doi: 10.1016/0025-5416(87)90157-1
  • L.M. Brown and F.R.N. Nabarro, The enumeration and transformation of dislocation dipoles II. The transformation of interstitial dipoles into vacancy dipoles in an open dislocation array. Philos. Mag 84 (2004), pp. 441–450. doi: 10.1080/14786430310001611671
  • K. Tanaka and T. Mura, A dislocation model for fatigue crack initiation. J. Appl. Mech 48 (1981), pp. 97–103. doi: 10.1115/1.3157599
  • U. Essmann and H. Mughrabi, Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities. Philos. Mag. A 40 (1979), pp. 731–756. doi: 10.1080/01418617908234871
  • T. Ohashi, Dislocation density-based modeling of crystal plasticity finite element analysis, in Handbook of Mechanics of Materials, C.-H. Hsueh, S. Schmauder, and Y. Kagawa, eds., Springer Nature, Singapore, 2018. pp. 1–26.
  • T. Ohashi, Generation and accumulation of atomic vacancies due to dislocation movement and pair annihilation. Philos. Mag 98 (2018), pp. 2275–2295. doi: 10.1080/14786435.2018.1478142
  • J. Polák, Resistivity of fatigued copper single crystals. Mater. Sci. Eng 89 (1987), pp. 35–43. doi: 10.1016/0025-5416(87)90247-3
  • T. Ohashi, Computer simulation of non-uniform multiple slip in face centered cubic bicrystals. Trans. JIM 28 (1987), pp. 906–915. doi: 10.2320/matertrans1960.28.906
  • U.F. Kocks and H. Mecking, Physics and phenomenology of strain hardening: the FCC case. Prog. Mater. Sci 48 (2003), pp. 171–273. doi: 10.1016/S0079-6425(02)00003-8
  • U.F. Kocks, Laws for work-hardening and low-temperature creep. Trans. ASME, J. Eng. Mat. Tech 98 (1976), pp. 76–85. doi: 10.1115/1.3443340
  • H. Mecking and U.F. Kocks, Kinetics of flow and strain-hardening. Acta Metall. 29 (1981), pp. 1865–1875. doi: 10.1016/0001-6160(81)90112-7
  • T. Ohashi, M. Kawamukai and H. Zbib, A multiscale approach for modeling scale-dependent yield stress in polycrystalline metals. Int. J. Plast 23 (2007), pp. 897–914. doi: 10.1016/j.ijplas.2006.10.002
  • T. Ohashi and Y. Okuyama, Crystal plasticity analysis of mechanical response and size effect in Two Phase Alloys with Dispersion of Fine Particles. Key Eng. Mater 725 (2017), pp. 267–272. doi: 10.4028/www.scientific.net/KEM.725.267
  • D. Kuhlmann-Wilsdorf, Theory of plastic deformation: - properties of low energy dislocation structures. Mater. Sci. Eng. A 113 (1989), pp. 1–41. doi: 10.1016/0921-5093(89)90290-6
  • A.S. Argon, Strengthening Mechanisms in Crystal Plasticity, Oxford university press, Oxford, 2008.
  • H. Wang, D. Xu, R. Yang and P. Veyssière, The transformation of edge dislocation dipoles in aluminium. Acta Mater. 56 (2008), pp. 4608–4620. doi: 10.1016/j.actamat.2008.05.019
  • H. Wang, D.S. Xu, R. Yang, and P. Veyssière, The transformation of narrow dislocation dipoles in selected fcc metals and in γ-TiAl. Acta Mater. 57 (2009), pp. 3725–3737. doi: 10.1016/j.actamat.2009.04.019
  • S. Brinckmann, R. Sivanesapillai and A. Hartmaier, On the formation of vacancies by edge dislocation dipole annihilation in fatigued copper. Int. J. Fatigue 33 (2011), pp. 1369–1375. doi: 10.1016/j.ijfatigue.2011.05.004
  • F. Appel, D. Herrmann, F.D. Fischer, J. Svoboda, and E. Kozeschnik, Role of vacancies in work hardening and fatigue of TiAl alloys. Int. J. Plast. 42 (2013), pp. 83–100. doi: 10.1016/j.ijplas.2012.10.001
  • Y. He, Z. Liu, G. Zhou, H. Wang, C. Bai, D. Rodney, F. Appel, D. Xu, R. Yang, Dislocation dipole-induced strengthening in intermetallic TiAl. Scr. Mater 143 (2018), pp. 98–102. doi: 10.1016/j.scriptamat.2017.09.010
  • T. Ohashi, M. Kawamukai and H. Zbib, Crystal plasticity modeling of scale dependency of yield stress for metal polycrystals, in Proceedings of PLASTICITY ‘06: The Twelfth International Symposium on Plasticity and its Current Applications, A.S. Khan and R. Kazmi, eds., NEAT press, Halifax, 2006, pp. 457–459.
  • R. Hill, Generalized constitutive relations for incremental deformation of metal crystals by multislip. J. Mech. Phys. Solids 14 (1966), pp. 95–102. doi: 10.1016/0022-5096(66)90040-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.