453
Views
13
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Mechanical behaviour of AZ31 magnesium alloy with the laminate and gradient structure

, , , , , & show all
Pages 3059-3077 | Received 14 Sep 2018, Accepted 21 Aug 2019, Published online: 05 Sep 2019

References

  • L.Y. Chen, J.Q. Xu, H. Choi, M. Pozuelo, X.L. Ma, S. Bhowmick, J.M. Yang, S. Mathaudhu and X.C. Li, Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature 528 (2015), pp. 539–543. doi: 10.1038/nature16445
  • Z. Huang, Q. Huang, J. Wei, L. Ma, D. Wu and D. He, Inhibitory effects of prefabricated crown on edge crack of rolled AZ31 magnesium alloy plate. J. Mater. Process. Tech. 246 (2017), pp. 85–92. doi: 10.1016/j.jmatprotec.2017.01.034
  • J.R. Dong, D.F. Zhang, J. Sun, Q.W. Dai and F.S. Pan, Effects of different stretching routes on microstructure and mechanical properties of AZ31B magnesium alloy sheets. J. Mater. Sci. Technol. 31 (2015), pp. 935–940. doi: 10.1016/j.jmst.2015.07.011
  • W.Q. Xu, N. Birbilis, G. Sha, Y. Wang, J.E. Daniels, Y. Xiao and M. Ferry, A high-specific-strength and corrosion-resistant magnesium alloy. Nature Mater. 14 (2015), pp. 1229–1235. doi: 10.1038/nmat4435
  • L.L. Chang, J.H. Cho and S.K. Kang, Microstructure and mechanical properties of twin roll cast AM31 magnesium alloy sheet processed by differential speed rolling. Mater. Design 34 (2012), pp. 746–752. doi: 10.1016/j.matdes.2011.06.060
  • A.A. Roostaei, A. Zarei-Hanzaki, H.R. Abedi and M.R. Rokni, An investigation into the mechanical behavior and microstructural evolution of the accumulative roll bonded AZ31 Mg alloy upon annealing. Mater. Design 32 (2011), pp. 2963–2968. doi: 10.1016/j.matdes.2011.01.038
  • W.Z. Chen, X. Wang, L.X. Hu and E. Wang, Fabrication of ZK60 magnesium alloy thin sheets with improved ductility by cold rolling and annealing treatment. Mater. Design 40 (2012), pp. 319–323. doi: 10.1016/j.matdes.2012.04.009
  • X.H. Chen, J. Lu, L. Lu and K. Lu, Tensile properties of a nanocrystalline 316L austenitic stainless steel. Scripta Mater. 52 (2005), pp. 1039–1044. doi: 10.1016/j.scriptamat.2005.01.023
  • Y.B. He, Q.L. Pan, Y.J. Qin, X.Y. Liu and W.B. Li, Microstructure and mechanical properties of ultrafine grain ZK60 alloy processed by equal channel angular pressing. J. Mater. Sci. 45 (2010), pp. 1655–1662. doi: 10.1007/s10853-009-4143-y
  • X.B. Gong, W.T. Gong, S.B. Kang and J.H. Cho, Effect of warm rolling on microstructure and mechanical properties of twin-roll casted ZK60 alloy sheets. Mater. Res-Ibero-Am. J. 18 (2015), pp. 360–364.
  • M. Kaseem, B.K. Chung, H.W. Yang, K. Hamad and Y.G. Ko, Effect of deformation temperature on microstructure and mechanical properties of AZ31 Mg alloy processed by differential-speed rolling. J. Mater. Sci. Technol. 31 (2015), pp. 498–503. doi: 10.1016/j.jmst.2014.08.016
  • Y.H. Wei, B.S. Liu, L.F. Hou, B.S. Xu and G. Liu, Characterization and properties of nanocrystalline surface layer in Mg alloy induced by surface mechanical attrition treatment. J. Alloy. Compd. 452 (2008), pp. 336–342. doi: 10.1016/j.jallcom.2006.11.079
  • H.W. Chang, P.M. Kelly, Y.N. Shi and M.X. Zhang, Thermal stability of nanocrystallized surface produced by surface mechanical attrition treatment in aluminum alloys. Surf. Coat. Tech. 206 (2012), pp. 3970–3980. doi: 10.1016/j.surfcoat.2012.03.069
  • W.J. Kim, C.W. An, Y.S. Kim and S.I. Hong, Mechanical properties and microstructures of an AZ61 Mg alloy produced by equal channel angular pressing. Scripta Mater. 47 (2002), pp. 39–44. doi: 10.1016/S1359-6462(02)00094-5
  • J.P. Young, H. Askari, Y. Hovanski, M.J. Heiden and D.P. Field, Thermal microstructural stability of AZ31 magnesium after severe plastic deformation. Mater. Charact. 101 (2015), pp. 9–19. doi: 10.1016/j.matchar.2014.12.026
  • R.N. Dehsorkhi, F. Qods and M. Tajally, Investigation on microstructure and mechanical properties of Al-Zn composite during accumulative roll bonding (ARB) process. Mater. Sci. Eng. A 530 (2011), pp. 63–72. doi: 10.1016/j.msea.2011.09.040
  • M.T. Pérez-Prado, J.A. del Valle and O.A. Ruano, Grain refinement of Mg–Al–Zn alloys via accumulative roll bonding. Scripta Mater. 51 (2004), pp. 1093–1097. doi: 10.1016/j.scriptamat.2004.07.028
  • T. Mukai, M. Yamanoi, H. Watanabe and K. Higashi, Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scripta Mater. 45 (2001), pp. 89–94. doi: 10.1016/S1359-6462(01)00996-4
  • S.R. Agnew, J.A. Horton, T.M. Lillo and D.W. Brown, Enhanced ductility in strongly textured magnesium produced by equal channel angular processing. Scripta Mater. 50 (2004), pp. 377–381. doi: 10.1016/j.scriptamat.2003.10.006
  • X.L. Wu, P. Jiang, L. Chen, F.P. Yuan and Y.T. Zhu, Extraordinary strain hardening by gradient structure. P. Natl. Acad. Sci. USA 111 (2014), pp. 7197–7201. doi: 10.1073/pnas.1324069111
  • K. Lu and J. Lu, Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater. Sci. Eng. A 375–377 (2004), pp. 38–45. doi: 10.1016/j.msea.2003.10.261
  • J.M. Xu, Y. Liu, B. Jin, J.X. Li, S.M. Zhai, X.J. Yang and J. Lu, Thermal stability of nanocrystalline AZ31 magnesium alloy fabricated by surface mechanical attrition treatment. Acta Metall. Sin. (Engl. Lett.) 28 (2015), pp. 1162–1169. doi: 10.1007/s40195-015-0308-7
  • Á Révész and L. Takacs, Coating metals by surface mechanical attrition treatment. J. All. Compd. 441 (2007), pp. 111–114. doi: 10.1016/j.jallcom.2006.09.081
  • K. Lu, Making strong nanomaterials ductile with gradients. Science 345 (2014), pp. 1455–1456. doi: 10.1126/science.1255940
  • A. Torosyan and L. Takacs, Mechanochemical reaction at the interface between a metal plate and oxide powders. J. Mater. Sci. 39 (2004), pp. 5491–5496. doi: 10.1023/B:JMSC.0000039272.78241.27
  • X.C. Liu, H.W. Zhang and K. Lu, Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science 342 (2013), pp. 337–340. doi: 10.1126/science.1242578
  • A. Yanagida, K. Joko and A. Azushima, Formability of steels subjected to cold ECAE process. J. Mater. Process. Tech. 201 (2008), pp. 390–394. doi: 10.1016/j.jmatprotec.2007.11.199
  • W. Blum, Y.J. Li and F. Breutinger, Deformation kinetics of coarse-grained and ultrafine-grained commercially pure Ti. Mater. Sci. Eng. A 462 (2007), pp. 275–278. doi: 10.1016/j.msea.2006.05.171
  • X.C. Meng, M. Duan, L. Luo, D.C. Zhan, B. Jin, Y.H. Jin, X.X. Rao, Y. Liu and J. Lu, The deformation behavior of AZ31 Mg alloy with surface mechanical attrition treatment. Mater. Sci. Eng. A 707 (2017), pp. 636–646. doi: 10.1016/j.msea.2017.09.094
  • A.Y. Chen, S.S. Shi, H.L. Tian, H.H. Ruan, X. Li, D. Pan and J. Lu, Effect of warm deformation on microstructure and mechanical properties of a layered and nanostructured 304 stainless steel. Mater. Sci. Eng. A 595 (2014), pp. 34–42. doi: 10.1016/j.msea.2013.11.052
  • L. Lu, X.W. Chen, X.X. Huang and K. Lu, Revealing the maximum strength in nanotwinned copper. Science 323 (2009), pp. 607–610. doi: 10.1126/science.1167641
  • Y.M. Wang, M.W. Chen, F.H. Zhou and E. Ma, High tensile ductility in a nanostructured metal. Nature 419 (2002), pp. 912–915. doi: 10.1038/nature01133
  • A.Y. Chen, D.F. Li, J.B. Zhang, F. Liu, X.R. Liu and J. Lu, Study of toughening mechanisms through the observations of crack propagation in nanostructured and layered metallic sheet. Mater. Sci. Eng. A 528 (2011), pp. 8389–8395. doi: 10.1016/j.msea.2011.07.063
  • J.F. Bartolomé, J.I. Beltrán, C.F. Gutiérrez-González, C. Pecharromán, M.C. Muñoz and J.S. Moya, Influence of ceramic-metal interface adhesion on crack growth resistance of ZrO2-Nb ceramic matrix composites. Acta Mater. 56 (2008), pp. 3358–3366. doi: 10.1016/j.actamat.2008.03.021
  • G.K. Williamson and W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metal. 1 (1953), pp. 22–31. doi: 10.1016/0001-6160(53)90006-6
  • H.Q. Sun, Y.N. Shi, M.X. Zhang and K. Lu, Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy. Acta Mater. 55 (2007), pp. 975–982. doi: 10.1016/j.actamat.2006.09.018
  • S.E. Ion, F.J. Humphreys and S.H. White, Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium. Acta Metall. 30 (1982), pp. 1909–1919. doi: 10.1016/0001-6160(82)90031-1
  • J.A. del Valle, M.T. Pérez-Prado and O.A. Ruano, Texture evolution during large-strain hot rolling of the Mg AZ61 alloy. Mater. Sci. Eng. A 355 (2003), pp. 68–78. doi: 10.1016/S0921-5093(03)00043-1
  • N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu and K. Lu, An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater. 50 (2002), pp. 4603–4616. doi: 10.1016/S1359-6454(02)00310-5
  • H. Chang, M.Y. Zheng, K. Wu, W.M. Gan, L.B. Tong and H.G. Brokmeier, Microstructure and mechanical properties of the accumulative roll bonded (ARBed) pure magnesium sheet. Mat. Sci. Eng. A-Struct. 527 (2010), pp. 7176–7183. doi: 10.1016/j.msea.2010.07.065
  • R. Armstrong, I. Codd, R.M. Douthwaite and N.J. Petch, The plastic deformation of polycrystalline aggregates. Philos. Mag. 7 (1962), pp. 45–58. doi: 10.1080/14786436208201857
  • X.L. Wu, P. Jiang, L. Chen, J.F. Zhang, F.P. Yuan and Y.T. Zhu, Synergetic strengthening by gradient structure. Mater. Res. Lett. 2 (2014), pp. 185–191. doi: 10.1080/21663831.2014.935821
  • H.J. Wu, T.Z. Wang and R.Z. Wu, Effects of annealing process on the interface of alternate α/β Mg-Li composite sheets prepared by accumulative roll bonding. J. Mater. Process. Tech. 254 (2018), pp. 265–276. doi: 10.1016/j.jmatprotec.2017.11.033
  • Z. Lv, X.P. Ren and H.L. Hou, Application of accumulative roll bonding process for manufacturing Mg/2 wt.% CNTs nanocomposite with superior mechanical properties. J. Nanosci. Nanotechnol. 17 (2017), pp. 4022–4031. doi: 10.1166/jnn.2017.13307
  • K. Wu, H. Chang, E. Maawad, W.M. Gan, H.G. Brokmeier and M.Y. Zheng, Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB). Mat. Sci. Eng. A 527 (2010), pp. 3073–3078. doi: 10.1016/j.msea.2010.02.001
  • M. Ali Sarigecili, H.H. Saygili and B. Kockar, The tensile and impact resistance properties of accumulative roll bonded Al6061 and AZ31 alloy plates. J. Mater. Res. 29 (2014), pp. 1223–1230. doi: 10.1557/jmr.2014.95
  • Z.J. Chen, Q.Z. Chen, Q. Liu, Z. Zhou and G.J. Wang, Fabrication and mechanical properties of ultrafine structured dissimilar laminated metal composite sheets (LMCS). Sci. Eng. Compos. Mater. 22 (2015), pp. 71–79.
  • X. Luo, T.L. Huang and Y.H. Wang, Strong and ductile AZ31 Mg alloy with a layered bimodal structure. Sci. Rep. 9 (2019), pp. 1–9. doi: 10.1038/s41598-018-37186-2
  • M. Abbasi and S.A. Sajjadi, Mechanical properties and interface evaluation of Al/AZ31 multilayer composites produced by ARB at different rolling temperatures. J. Mater. Eng. Perform. 27 (2018), pp. 3508–3520. doi: 10.1007/s11665-018-3423-6
  • F. Zhong, T.Z. Wang, L.J. Hou and R.Z. Wu, Microstructure, texture, and mechanical properties of alternate α/βMg–Li composite sheets prepared by accumulative roll bonding. Adv. Eng. Mater. 19(5) (2017), pp. 1600817. doi: 10.1002/adem.201600817
  • R. Abedi and A. Akbarzadeh, Bond strength and mechanical properties of three-layered St/AZ31/St composite fabricated by roll bonding. Mater. Design 88 (2015), pp. 880–888. doi: 10.1016/j.matdes.2015.09.043
  • C. Zhiqiang, L. Wei, Y. Bin and Z. Bin, Interfacial microstructure and mechanical properties of Al5052/Mg-9.5Li-2Al alloy clad plates. Rare Metal Mat. Eng. 44 (2015), pp. 587–591. doi: 10.1016/S1875-5372(15)30044-8
  • W.B. Hutchinson and M.R. Barnett, Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals. Scripta Mater. 63 (2010), pp. 737–740. doi: 10.1016/j.scriptamat.2010.05.047
  • S. Alkan and H. Sehitoglu, Non-schmid response of Fe3Al: The twin-antitwin slip asymmetry and non-glide shear stress effects. Acta Mater. 125 (2017), pp. 550–566. doi: 10.1016/j.actamat.2016.12.019
  • A.Y. Chen, Y.K. Li, J.B. Zhang, D. Pan and J. Lu, The influence of interface structure on nanocrystalline deformation of a layered and nanostructured steel. Mater. Design 47 (2013), pp. 316–322. doi: 10.1016/j.matdes.2012.11.050
  • A.Y. Chen, D.F. Li, J.B. Zhang, H.W. Song and J. Lu, Make nanostructured metal exceptionally tough by introducing non-localized fracture behaviors. Scripta Mater. 59 (2008), pp. 579–582. doi: 10.1016/j.scriptamat.2008.04.048
  • J.P. Parmigiani and M.D. Thouless, The roles of toughness and cohesive strength on crack deflection at interfaces. J. Mech. Phys. Solids 54 (2006), pp. 266–287. doi: 10.1016/j.jmps.2005.09.002
  • T. Fei, Y.X. Yu, C.G. Zhou and J.B. Sha, The deformation and fracture modes of fine and coarsened NbSS phase in a Nb-20Si-24Ti-2Al-2Cr alloy with a NbSS/Nb5Si3 microstructure. Mater. Design 116 (2017), pp. 92–98. doi: 10.1016/j.matdes.2016.12.001
  • K. Lu, Gradient nanostructured materials. Acta Metall. Sin. 51 (2015), pp. 1–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.