497
Views
10
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Structural stability of SrZrO3 perovskite and improvement in electronic and optical properties by Ca and Ba doping for optoelectronic applications: a DFT approach

ORCID Icon, , , , , , , & show all
Pages 3133-3145 | Received 29 Jul 2019, Accepted 26 Aug 2019, Published online: 21 Sep 2019

References

  • R. Davies, M. Islam, and J. Gale, Dopant and proton incorporation in perovskite type zirconate, Solid State Ionics 126 (1999), pp. 323–335. doi: 10.1016/S0167-2738(99)00244-1
  • Z. Wu, Effect of BaO-Al2O3-B2O3-SiO2 glass additive on densification and dielectric properties of Ba0.3Sr 0.7 TiO3 ceramics, J. Ceram. Soc. Japan 116 (2008), pp. 345–349. doi: 10.2109/jcersj2.116.345
  • R.V. Shende, D.S. Krueger, G.A. Rossetti, and S.J. Lombardo, Strontium zirconate and strontium titanate ceramics for high-voltage applications: Synthesis, processing, and dielectric properties, J. Am. Ceram. Soc. 84 (2001), pp. 1648–1650. doi: 10.1111/j.1151-2916.2001.tb00893.x
  • N. Fukatsu, N. Kurita, T. Yajima, K. Koide, and T. Ohashi, Proton conductors of oxide and their application to research into metal-hydrogen systems, J. Alloys Compounds 231 (1995), pp. 706–712. doi: 10.1016/0925-8388(95)01757-7
  • T. Yajima, H. Suzuki, T. Yogo, and H. Iwahara, Protonic conduction in SrZrO3-based oxides, Solid State Ionics 51 (1992), pp. 101–107. doi: 10.1016/0167-2738(92)90351-O
  • H. Iwahara, T. Yajima, T. Hibino, and H. Ushida, Performance of solid oxide fuel cell using proton and oxide ion mixed conductors based on BaCe1-x SmxO3, J. Electrochem. Soc. 140 (1993), pp. 1687–1691. doi: 10.1149/1.2221624
  • P. Colomban, Proton Conductors: Solids, Membranes and Gels-Materials and Devices, Vol. 2, Cambridge University Press, Cambridge, UK, 1992.
  • E. Mete, R. Shaltaf, and S. Ellialtioglu, Electronic and structural properties of a 4d perovskite: cubic phase of SrZrO3, Phys. Rev. B 68 (2003), pp. 035119-1–035119-4. doi: 10.1103/PhysRevB.68.035119
  • T. Yajima, K. Koide, H. Takai, N. Fukatsu, and H. Iwahara, Application of hydrogen sensor using proton conductive ceramics as a solid electrolyte to aluminum casting industries, Solid State Ionics 79 (1995), pp. 333–337. doi: 10.1016/0167-2738(95)00083-I
  • N. Kurita, N. Fukatsu, and T. Ohashi, Hydrogen analyzer based on Coulometric titration using proton conductive solid electrolyte, J. Japan Inst. Metals 58 (1994), pp. 782–788. doi: 10.2320/jinstmet1952.58.7_782
  • H. Iwahara, T. Esaka, H. Uchida, and N. Maeda, Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production, Solid State Ionics 3–4 (1981), pp. 359–363. doi: 10.1016/0167-2738(81)90113-2
  • R.S. Roth, Classification of perovskite and other ABO3-type compounds, J. Res. Natl. Bur. Stand. 58 (1957), pp. 75–88. doi: 10.6028/jres.058.010
  • H.E. Swanson, M.I. Cook, T. Isaacs, and E.H. Evans, Standard X-ray diffraction powder patterns. Natl. Bur. Stand. Circ. 539 (1960), pp. 51–54.
  • R. Vali, Band structure and dielectric properties of orthorhombic SrZrO3, Solid State Commun. 145 (2008), pp. 497–501. doi: 10.1016/j.ssc.2007.12.009
  • K. Galicka-Fau, C. Legros, M. Andrieux, M. Herbst-Ghysel, I. Gallet, M. Condat, O. Durand, and B. Servet, Thickness determination of SrZrO3 thin films using both X-ray reflectometry and SIMS techniques, Thin Solid Films 516 (2008), pp. 7967–7973. doi: 10.1016/j.tsf.2008.04.005
  • L. Carlsson, High-temperature phase transitions in SrZrO3, Acta Cryst. 23 (1967), pp. 901–905. doi: 10.1107/S0365110X67004013
  • L. Carlsson, Non-elastic mechanical behavior in SrZrO3 by reorientation, J. Mater. Sci. 5 (1970), pp. 335–339. doi: 10.1007/PL00020105
  • B.J. Kennedy, C.J. Howard, and B.C. Chakoumakos, High-temperature phase transitions in SrZrO3, Phys. Rev. B 59 (1999), pp. 4023–4027. doi: 10.1103/PhysRevB.59.4023
  • T. Matsuda, S. Yamakama, K. Kurosaki, and S.-i. Kobayashi, High temperature phase transitions of SrZrO3, J. Alloys Compounds 351 (2003), pp. 43–46. doi: 10.1016/S0925-8388(02)01068-X
  • D. de Ligny and P. Richet, High-temperature heat capacity and thermal expansion of SrTiO3and SrZrO3 perovskites, Phys. Rev. B 53 (1996), pp. 3013–3022. doi: 10.1103/PhysRevB.53.3013
  • D. Souptel, G. Behr, and A. Balbashov, Srzro3 single crystal growth by floating zone technique with radiation heating, J. Cryst. Growth 236 (2002), pp. 583–588. doi: 10.1016/S0022-0248(01)02393-4
  • J. Muscat, A. Wander, and N. Harrison, On the prediction of band gaps from hybrid functional theory, Chem. Phys. Lett. 342 (2001), pp. 397–401. doi: 10.1016/S0009-2614(01)00616-9
  • J. Sambrano, J. Martins, J. Andres, and E. Longo, Theoretical analysis on TiO2/V doped (110) surface, Int. J. Quantum Chem. 85 (2001), pp. 44–51. doi: 10.1002/qua.1098
  • J. Sambrano, G. Nobrega, C. Taft, J. Andres, and A. Beltran, A theoretical analysis of the TiO2/Sn doped (110) surface properties, Surf. Sci. 580 (2005), pp. 71–79. doi: 10.1016/j.susc.2005.02.010
  • J.R. Sambrano, E. Orhan, M.F.C. Gurgel, A.B. Campos, M.S. Goes, C.O. Paiva-Santos, J.A. Varela, and E. Longo, Theoretical analysis of the structural deformation in Mn-doped BaTiO3, Chem. Phys. Lett. 402 (2005), pp. 491–496. doi: 10.1016/j.cplett.2004.12.084
  • J.R. Sambrano, V.M. Longo, E. Longo, and C.A. Taft, Electronic and structural properties of the (001) SrZrO3 surface, J. Mol. Struct. Theochem. 813 (2007), pp. 49–56. doi: 10.1016/j.theochem.2007.02.022
  • A. Maqbool, A. Hussain, J.U. Rehman, J.K. Park, T.G. Park, J.S. Song, and M.H. Kim, Effect of SrZrO3 substitution on structural and optical properties of lead-free Bi0.5Na0.5TiO3-BaTiO3 ceramics, Phys. Stat. Sol. (a) 211 (2014), pp. 1709–1714. doi: 10.1002/pssa.201330564
  • R. Terki, H. Feraoun, G. Bertand, and H. Aourag, Full potential calculation of structural, elastic and electronic properties of BaZrO3 and SrZrO3, Phys. Stat. Sol. (b) 242 (2005), pp. 1054–1062. doi: 10.1002/pssb.200402142
  • R. Evarestov, A. Bandura, and V. Aleksandrov, Calculations of the electronic structure of crystalline SrZrO3 in the framework of the density functional theory in the LCAO approximation, Phys. Solid State 47 (2005), pp. 2248–2256. doi: 10.1134/1.2142886
  • R. Evarestov, A. Bandura, V. Alexandrov, and E. Kotomin, DFT LCAO and plane wave calculations of SrZrO3, Phys. Status Solidi (b) 242 (2005), pp. R11–R13. doi: 10.1002/pssb.200409085
  • J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46 (1992), pp. 6671–6687. doi: 10.1103/PhysRevB.46.6671
  • J.P. Perdew, K. Bruke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865. doi: 10.1103/PhysRevLett.77.3865
  • V. Milman, B. Winkler, J.A. White, C.J. Pickard, M.C. Payne, E.V. Akhmatskaya, and R.H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane wave study, Int. J. Quantum Chem. 77 (2000), pp. 895–910. doi: 10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C
  • M.D. Segall, P.L.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, First principles simulation: Ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter. 14 (2002), pp. 2717–2744. doi: 10.1088/0953-8984/14/11/301
  • C. Tsai and H. Teng, Chromium-doped titanium dioxide thin-film photo-anodes in visible-light induced water cleavage, Appl. Surf. Sci. 254 (2008), pp. 4912–4918. doi: 10.1016/j.apsusc.2008.01.140
  • Z. Feng, H. Hu, S. Cui, and C. Bai, First-principles study of optical properties of SrZrO3 in cubic phase, Solid State Commun. 148 (2008), pp. 472–475. doi: 10.1016/j.ssc.2008.08.030
  • A.J. Smith, and A.J.E. Welch, Some mixed metal oxides of perovskite structure, Acta Crystallogr. 13 (1960), pp. 653–656. doi: 10.1107/S0365110X60001540
  • Available at https://environmentalchemistry.com/yogi/periodic/ionicradius.html.
  • M. Yoshino, K. Nakatsuka, H. Yukawa, and M. Morinaga, Local electronic structures around hydrogen and acceptor ions in perovskite-type oxide, SrZrO3, Solid State Ionics 127 (2000), pp. 109–123. doi: 10.1016/S0167-2738(99)00274-X
  • Y.S. Lee, J.S. Lee, T.W. Noh, D.Y. Byun, K.S. Yoo, K. Yamaura, and E. Takayama-Muromachi, Systematic trends in the electronic structure parameters of 4d transition metal oxides SrMO3 (M = Zr, Mo, Ru, and Rh). Phys. Rev. B 67 (2003), pp. 113101–113107. doi: 10.1103/PhysRevB.67.113101
  • R.O. Jones and O. Gunnarsson, The density functional formalism, its applications and prospects, Rev. Mod. Phys. 61 (1989), pp. 689–746. doi: 10.1103/RevModPhys.61.689
  • P. Blennow, A. Hagen, and K. Hansen, Defect and electrical transport properties of Nb-doped SrTiO3, Solid State Ionics 179 (2008), pp. 2047–2058. doi: 10.1016/j.ssi.2008.06.023
  • S.S.A. Gillani, R. Ahmad, M. Rizwan, M. Rafique, G. Ullah, C.B. Cao, and H.B. Jin, Effect of magnesium doping on band gap and optical properties of SrZrO3 perovskite: A first-principles study, Optik Int. J. Light Electron Opt. 191 (2019), pp. 132–138. doi: 10.1016/j.ijleo.2019.05.099
  • B. Xu and L. Yi, First-principle study of the ferroelectricity and optical properties of the BaBi2Ta2O9, J. Alloys Compounds 438 (2007), pp. 25–29. doi: 10.1016/j.jallcom.2006.08.023
  • M. Fox, Optical Properties of Solids, Oxford University Press, Oxford, UK, 2001.
  • H.S. Park, D.H. Kim, S.J. Kim, and K.S. Lee, The photocatalytic activity of 2.5wt% Cu-doped TiO2 nano powders synthesized by mechanical alloying, J. Alloys Compounds 415 (2006), pp. 51–55. doi: 10.1016/j.jallcom.2005.07.055
  • V.I. Gavrilenko and R.Q. Wu, Linear and nonlinear optical properties of group-III nitrides, Phys. Rev. B 61 (2000), pp. 2632–2642. doi: 10.1103/PhysRevB.61.2632
  • A. Janotti, B. Jalan, S. Stemmer, and C.G. Van de Walle, Effects of doping on the lattice parameter of SrTiO3, Appl. Phys. Lett. 100 (2012), pp. 262104-1–262104-3. doi: 10.1063/1.4730998
  • H.R. Philipp and H. Ehrenreich, Observation of d-bands in 3-5 semiconductors, Phys. Rev. Lett. 8 (1962), pp. 92–94. doi: 10.1103/PhysRevLett.8.92

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.