143
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Study of the electric and magnetic properties in doped pyrochlore iridate Bi2-xCuxIr2O7

, , , &
Pages 126-137 | Received 25 Mar 2019, Accepted 27 Aug 2019, Published online: 24 Sep 2019

References

  • M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transitions, Rev. Mod. Phys. 70 (1998), pp. 1039–1263. doi: 10.1103/RevModPhys.70.1039
  • N.F. Mott, Metal-insulator transitions, Rev. Mod. Phys. 40 (1968), pp. 677–683. doi: 10.1103/RevModPhys.40.677
  • J. Orenstein and A.J. Millis, Advances in the physics of high-temperature superconductivity, Science 288 (2000), pp. 468–474. doi: 10.1126/science.288.5465.468
  • G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, and C.A. Marianetti, Electronic structure calculations with dynamical mean-field theory, Rev. Mod. Phys. 78 (2006), pp. 865–951. doi:10.1103/RevModPhys.78.865.
  • W.E. Pickett, Electronic structure of the high-temperature oxide superconductors, Rev. Mod. Phys. 61 (1989), pp. 433–512. doi: 10.1103/RevModPhys.61.433
  • F. Baumberger, N.J.C. Ingle, and W. Meevasana, Fermi Surface and Quasiparticle Excitations of Sr2Rh04, Phys. Rev. Lett. 96(1-5) (2006), pp. 246402. doi: 10.1103/PhysRevLett.96.246402
  • L.F. Mattheiss, Electronic structure of Ru02, Os02, and Ir02, Phys. Rev. B. 13 (1976), pp. 2433–2450. doi: 10.1103/PhysRevB.13.2433
  • B.J. Kim, H. Jin, S.J. Moon, J.Y. Kim, B.G. Park, C.S. Leem, J. Yu, T.W. Noh, C. Kim, S.J. Oh, J.H. Park, V. Durairaj, G. Cao, and E. Rotenberg, Novel Jeff = l/2 Mott state induced by relativistic spin-orbit coupling in Sr2Ir04, Phys. Rev. Lett. 101(1-4) (2008), pp. 076402. doi:10.1103/PhysRevLett.101.076402.
  • X. Wan, A.M. Turner, A. Vishwanath, and S.Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B. 83(1-10) (2011), pp. 205101. doi: 10.1103/PhysRevB.83.205101.
  • L. Balents, Weyl electrons kiss, Physics. (College. Park. Md) 4(36) (2011), pp. 1–3.
  • W. Liu, H. Han, L. Ling, L. Ma, L. Pi, L. Zhang, and Y. Zhang, Localization induced by pressure in pyrochlore Bi2Ir2O7, Ceram Int. 43 (2017), pp. 17100–17103. doi: 10.1016/j.ceramint.2017.09.125
  • D. Liang, H. Liu, N. Liu, L. Ling, Y. Han, L. Zhang, and C. Zhang, Structural, magnetic and electrical properties in the pyrochlore oxide Bi2-xCaxIr2O7, Ceram Int. 42 (2016), pp. 4562–4566. doi: 10.1016/j.ceramint.2015.11.149
  • N.K. Beck, B. Steiger, G.G. Scherer, and A. Wokaun, Methanol tolerant oxygen reduction catalysts derived from electrochemically pre-treated Bi2Pt2-yIryO7 pyrochlores, Fuel Cells 6 (2006), pp. 26–30. doi: 10.1002/fuce.200500091
  • D. Liang, H. Liu, L. Langsheng, L. Zhang, C. Zhang, and Y. Zhang, Magnetic and magnetoelectric properties of hybrid-frustrated Bi2MnxIr2-xO7 pyrochlores, Solid State Commun. 278 (2018), pp. 36–41. doi: 10.1016/j.ssc.2018.05.004
  • C. Cosio-Castaneda, P. de la Mora, F. Morales, R. Escudero, and G. Tavizon, Magnetic behavior of the Bi2-ySryIr2O7 pyrochlore solid solution, J Solid State Chem. 200 (2013), pp. 49–53. doi: 10.1016/j.jssc.2013.01.009
  • M.L. Sanjuán, C. Guglieri, S. Díaz-Moreno, G. Aquilanti, A.F. Fuentes, L. Olivi, and J. Chaboy, Raman and x-ray absorption spectroscopy study of the phase evolution induced by mechanical milling and thermal treatments in R2Ti2O7 pyrochlores, Phys. Rev. B. 84(1-18) (2011), pp. 104207. doi: 10.1103/PhysRevB.84.104207
  • T. Hasegawa, N. Ogita, K. Matsuhira, S. Takagi, M. Wakeshima, Y. Hinatsu, and M. Udagawa, Raman scattering study in iridium pyrochlore oxides, J. Phys:Conf. Ser. 200(1-4) (2010), pp. 012054. doi:10.1088/1742-6596/200/1/012054.
  • D. J. Arenas, L. V. Gasparow, W. Qiu, J. C. Nino, C.H. Patterson, and D. B. Tanner, Raman study of phonon modes in bismuth pyrochlores, Phys. Rev. B. 82(1-8) (2010), pp. 214302. doi:10.1103/PhysRevB.82.214302.
  • S. Brown, H.C. Gupta, J.A. Alonso, and M.J. Martinez-Lope, Lattice dynamical study of optical modes in Tl2Mn2O7 and In2Mn2O7 pyrochlores, Phys. Rev. B. 69(1-6) (2004), pp. 054434. doi:10.1103/PhysRevB.69.054434.
  • H.J. Koo, M.H. Whangbo, and B.J. Kennedy, Similarities and differences in the structural and electronic properties of ruthenium and iridium pyrochlores A2M2O7-y(M = Ru, Ir), J. Solid State Chem. 136 (1998), pp. 269–273. doi: 10.1006/jssc.1997.7705
  • Y.S. Lee, S.J. Moon, S.C. Riggs, M.C. Shapiro, I.R. Fisher, B.W. Fulfer, J.Y. Chan, A.F. Kemper, and D.N. Basov, Infrared study of the electronic structure of the metallic pyrochlore iridate Bi2Ir2O7, Phys. Rev. B. 87(1-7) (2013), pp. 195143. doi:10.1103/PhysRevB.87.195143.
  • K. Sardar, S.C. Ball, J.D.B. Sharman, D. Thompsett, J.M. Fisher, R.A.P. Smith, P.K. Biswas, M.R. Lees, R.J. Kashtiban, J. Sloan, and R.I. Walton, Bismuth iridium oxide oxygen evolution catalyst from hydrothermal synthesis, Chem. Mater. 24 (2012), pp. 4192–4200. doi: 10.1021/cm302468b
  • E. Zghal, M. Koubaa, P. Berthet, L. Sicard, W. Cheikhrouhou-Koubaa, C. DecorsePascanut, A. Cheikhrouhou, and S. Ammar-Merah, Magneto-transport properties of La0. 75Ca0. 15Sr0. 1MnO3 with YBa2Cu3O7 addition, J. Magn. Magn. Mater. 414 (2016), pp. 97–104. doi: 10.1016/j.jmmm.2016.04.066
  • V. NeerajPanwar, D.K. Pandy, and S.K. Agarwal, Grain boundary on the electrical and magnetic properties of Pr2/3Ba1/3MnO3 and La2/3Ca1/3MnO3 manganites, Mater. Lett. 61 (2007), pp. 4879–4883. doi: 10.1016/j.matlet.2007.03.062
  • T.F. Qi, O.B. Korneta, X.g. Wan, L.E. DeLong, P. Schlottmann, and G. Cao, Strong magnetic instability in correlated metallic Bi2Ir2O7, J. Phys: Condens. Matter. 24(1-6) (2012), pp. 345601. doi:10.1088/0953-8984/24/34/345601.
  • P.J. Baker, J.S. Möller, F.L. Pratt, W. Hayes, S.J. Blundell, T. Lancaster, T.F. Qi, and G. Cao, Weak magnetic transitions in pyrochlore Bi2Ir2O7, Phys. Rev. B. 87(1-5) (2013), pp. 180409. doi:10.1103/PhysRevB.87.180409.
  • H. Liu, J. Bian, S. Chen, Y. Wang, Y. Feng, and W. Tong, Yu Xie and Baolong Fang, enhanced ferromagnetism and Mott variable-range hopping behavior in Cu doped pyrochlore iridate Y2Ir2O7, Phys. B 568 (2019), pp. 60–65. doi: 10.1016/j.physb.2019.05.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.