253
Views
8
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Steady-state characteristics of fcc pure metals processed by severe plastic deformation: experiments and modelling

, , &
Pages 62-83 | Received 10 Apr 2019, Accepted 05 Sep 2019, Published online: 09 Oct 2019

References

  • R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45 (2000), pp. 103–189. doi: 10.1016/S0079-6425(99)00007-9
  • T.G. Langdon, Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Mater. 61 (2013), pp. 7035–7059. doi: 10.1016/j.actamat.2013.08.018
  • Y. Estrin and A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 61 (2013), pp. 782–817. doi: 10.1016/j.actamat.2012.10.038
  • V. Rybin, High Plastic Deformation and Fracture of Metals, Metallurgiya, Moscow, 1986.
  • V.I. Kopylov and V.N. Chuvil'deev, Nanostructured materials by high-pressure severe plastic deformation, 2006.
  • O. Bouaziz, Y. Estrin, Y. Bréchet and J.D. Embury, Critical grain size for dislocation storage and consequences for strain hardening of nanocrystalline materials. Scr. Mater. 63 (2010), pp. 477–479. doi: 10.1016/j.scriptamat.2010.05.006
  • M.J. Starink, X. Cheng and S. Yang, Hardening of pure metals by high-pressure torsion: A physically based model employing volume-averaged defect evolutions. Acta Mater. 61 (2013), pp. 183–192. doi: 10.1016/j.actamat.2012.09.048
  • S.V. Divinski, K.A. Padmanabhan and G. Wilde, Microstructure evolution during severe plastic deformation. Philos. Mag. 91 (2011), pp. 4574–4593. doi: 10.1080/14786435.2011.615349
  • A.P. Zhilyaev, S. Swaminathan, A.I. Pshenichnyuk, T.G. Langdon and T.R. McNelley, Adiabatic heating and the saturation of grain refinement during SPD of metals and alloys: experimental assessment and computer modeling. J. Mater. Sci. 48 (2013), pp. 4626–4636. doi: 10.1007/s10853-013-7254-4
  • W. Blum, Y.J. Li and K. Durst, Stability of ultrafine-grained Cu to subgrain coarsening and recrystallization in annealing and deformation at elevated temperatures. Acta Mater. 57 (2009), pp. 5207–5217. doi: 10.1016/j.actamat.2009.07.030
  • F. Liu, H. Yuan, S. Goel, Y. Liu and J.T. Wang, Bulk nanolaminated nickel: preparation, microstructure, mechanical Property, and thermal Stability. Metall. Mater. Trans. A 49 (2018), pp. 576–594. doi: 10.1007/s11661-017-4394-1
  • H.J. Fecht, Nanostructure formation by mechanical attrition. Nanostruct. Mater. 6 (1995), pp. 33–42. doi: 10.1016/0965-9773(95)00027-5
  • F.A. Mohamed, A dislocation model for the minimum grain size obtainable by milling. Acta Mater. 51 (2003), pp. 4107–4119. doi: 10.1016/S1359-6454(03)00230-1
  • F. Liu, H. Yuan, J. Yin and J.T. Wang, Influence of stacking fault energy and temperature on microstructures and mechanical properties of fcc pure metals processed by equal-channel angular pressing. Mater. Sci. Eng.: A 662 (2016), pp. 578–587. doi: 10.1016/j.msea.2016.03.022
  • X.X. Wu, X.Y. San, X.G. Liang, Y.L. Gong and X.K. Zhu, Effect of stacking fault energy on mechanical behavior of cold-forging Cu and Cu alloys. Mater. Des. 47 (2013), pp. 372–376. doi: 10.1016/j.matdes.2012.12.006
  • F. Emeis, M. Peterlechner, S.V. Divinski and G. Wilde, Grain boundary engineering parameters for ultrafine grained microstructures: proof of principles by a systematic composition variation in the Cu-Ni system. Acta Mater. 150 (2018), pp. 262–272. doi: 10.1016/j.actamat.2018.02.054
  • Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto and T.G. Langdon, Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scr. Mater. 35 (1996), pp. 143–146. doi: 10.1016/1359-6462(96)00107-8
  • Q.X. Pei, B.H. Hu, C. Lu and Y.Y. Wang, A finite element study of the temperature rise during equal channel angular pressing. Scr. Mater. 49 (2003), pp. 303–308. doi: 10.1016/S1359-6462(03)00284-7
  • R.Z. Valiev and T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51 (2006), pp. 881–981. doi: 10.1016/j.pmatsci.2006.02.003
  • F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004.
  • W. Püschl, Models for dislocation cross-slip in close-packed crystal structures: a critical review. Prog. Mater. Sci. 47 (2002), pp. 415–461. doi: 10.1016/S0079-6425(01)00003-2
  • H. Parvin and M. Kazeminezhad, Development a dislocation density based model considering the effect of stacking fault energy: severe plastic deformation. Comput. Mater. Sci. 95 (2014), pp. 250–255. doi: 10.1016/j.commatsci.2014.07.027
  • W.D. Nix, J.C. Gibeling and D.A. Hughes, Time-dependent deformation of metals. Metall. Trans. A 16 (1985), pp. 2215–2226. doi: 10.1007/BF02670420
  • A.S. Argon and W.C. Moffatt, Climb of extended edge dislocations. Acta Metall. 29 (1981), pp. 293–299. doi: 10.1016/0001-6160(81)90156-5
  • S.V. Divinski, G. Reglitz, H. Rösner, Y. Estrin and G. Wilde, Ultra-fast diffusion channels in pure Ni severely deformed by equal-channel angular pressing. Acta Mater. 59 (2011), pp. 1974–1985. doi: 10.1016/j.actamat.2010.11.063
  • A. Zhilyaev, A. Gimazov and T. Langdon, Recent developments in modelling of microhardness saturation during SPD processing of metals and alloys. J. Mater. Sci. 48 (2013), pp. 4461–4466. doi: 10.1007/s10853-013-7155-6
  • K. Edalati and Z. Horita, Significance of homologous temperature in softening behavior and grain size of pure metals processed by high-pressure torsion. Mater. Sci. Eng.: A 528 (2011), pp. 7514–7523. doi: 10.1016/j.msea.2011.06.080
  • M. Kawasaki, Z. Horita and T.G. Langdon, Microstructural evolution in high purity aluminum processed by ECAP. Mater. Sci. Eng.: A 524 (2009), pp. 143–150. doi: 10.1016/j.msea.2009.06.032
  • A. Yamashita, D. Yamaguchi, Z. Horita and T.G. Langdon, Influence of pressing temperature on microstructural development in equal-channel angular pressing. Mater. Sci. Eng.: A 287 (2000), pp. 100–106. doi: 10.1016/S0921-5093(00)00836-4
  • H. Wen, Y. Zhao, T.D. Topping, D. Ashford, R.B. Figueiredo, C. Xu, T.G. Langdon and E.J. Lavernia, Influence of pressing temperature on microstructure evolution and mechanical behavior of ultrafine-grained Cu processed by equal-channel angular pressing. Adv. Eng. Mater. 14 (2012), pp. 185–194. doi: 10.1002/adem.201100080
  • W.K. Skrotzki, B. Hunsche, I. Chulist, R. Suwas, and L.S. Toth, Influence of dynamic recrystallization on texture formation in ECAP deformed nickel. Mater. Sci. Forum 558-559 (2007), pp. 575–580. doi: 10.4028/www.scientific.net/MSF.558-559.575
  • Y.Y. Wang, P.L. Sun, P.W. Kao and C.P. Chang, Effect of deformation temperature on the microstructure developed in commercial purity aluminum processed by equal channel angular extrusion. Scr. Mater. 50 (2004), pp. 613–617. doi: 10.1016/j.scriptamat.2003.11.027
  • S.I. Wright, M.M. Nowell and D.P. Field, A Review of strain analysis using electron backscatter diffraction. Microsc. Microanal. 17 (2011), pp. 316–329. doi: 10.1017/S1431927611000055
  • Y.H. Zhao, H.W. Sheng and K. Lu, Microstructure evolution and thermal properties in nanocrystalline Fe during mechanical attrition. Acta Mater. 49 (2001), pp. 365–375. doi: 10.1016/S1359-6454(00)00310-4
  • Y.H. Zhao, Z. Horita, T.G. Langdon and Y.T. Zhu, Evolution of defect structures during cold rolling of ultrafine-grained Cu and Cu–Zn alloys: influence of stacking fault energy. Mater. Sci. Eng.: A 474 (2008), pp. 342–347. doi: 10.1016/j.msea.2007.06.014
  • J. Gubicza, N.Q. Chinh, G. Krállics, I. Schiller and T. Ungár, Microstructure of ultrafine-grained fcc metals produced by severe plastic deformation. Curr. Appl. Phys. 6 (2006), pp. 194–199. doi: 10.1016/j.cap.2005.07.039
  • Y. Zhao, K. Zhang and K. Lu, Structure characteristics of nanocrystalline element selenium with different grain sizes. Phys. Rev. B 56 (1997), pp. 14322–14329. doi: 10.1103/PhysRevB.56.14322
  • Y.M. Wang and E. Ma, Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 52 (2004), pp. 1699–1709. doi: 10.1016/j.actamat.2003.12.022
  • N.Q. Chinh, G. Horváth, Z. Horita and T.G. Langdon, A new constitutive relationship for the homogeneous deformation of metals over a wide range of strain. Acta Mater. 52 (2004), pp. 3555–3563. doi: 10.1016/j.actamat.2004.04.009
  • T. Csanádi, N.Q. Chinh, J. Gubicza and T.G. Langdon, Plastic behavior of fcc metals over a wide range of strain: Macroscopic and microscopic descriptions and their relationship. Acta Mater. 59 (2011), pp. 2385–2391. doi: 10.1016/j.actamat.2010.12.034
  • Y. Xun and F.A. Mohamed, Refining efficiency and capability of top-down synthesis of nanocrystalline materials. Mater. Sci. Eng.: A 528 (2011), pp. 5446–5452. doi: 10.1016/j.msea.2011.03.015
  • X. Liang, Scaling of stacking fault energy and deformation temperature on strain hardening of FCC metals and alloys. Philos. Mag. Lett. 94 (2014), pp. 556–563. doi: 10.1080/09500839.2014.944602
  • K. Edalati, J.M. Cubero-Sesin, A. Alhamidi, I.F. Mohamed and Z. Horita, Influence of severe plastic deformation at cryogenic temperature on grain refinement and softening of pure metals: investigation using high-pressure torsion. Mater. Sci. Eng.: A 613 (2014), pp. 103–110. doi: 10.1016/j.msea.2014.06.084
  • T. Konkova, S. Mironov, A. Korznikov and S.L. Semiatin, On the room-temperature annealing of cryogenically rolled copper. Mater. Sci. Eng.: A 528 (2011), pp. 7432–7443. doi: 10.1016/j.msea.2011.06.047
  • J. Gubicza, N.Q. Chinh, J.L. Lábár, Z. Hegedus and T.G. Langdon, Principles of self-annealing in silver processed by equal-channel angular pressing: The significance of a very low stacking fault energy. Mater. Sci. Eng.: A 527 (2010), pp. 752–760. doi: 10.1016/j.msea.2009.08.071
  • L.E. Murr, Interfacial Phenomena in Metal and Alloys, Addison Wesley, London, 1975.
  • Z.H.H. Matsunaga, Softening and Microstructural coarsening without twin formation in FCC metals with Low stacking fault energy after Processing by high-Pressure Torsion. Mater. Trans. 50 (2009), pp. 1633–1637. doi: 10.2320/matertrans.MF200921
  • J. Gubicza, N.Q. Chinh, P. Szommer, A. Vinogradov and T.G. Langdon, Microstructural characteristics of pure gold processed by equal-channel angular pressing. Scr. Mater. 56 (2007), pp. 947–950. doi: 10.1016/j.scriptamat.2007.02.018
  • W.H. Huang, C.Y. Yu, P.W. Kao and C.P. Chang, The effect of strain path and temperature on the microstructure developed in copper processed by ECAE. Mater. Sci. Eng.: A 366 (2004), pp. 221–228. doi: 10.1016/j.msea.2003.08.033
  • K.S. Raju, M.G. Krishna, K.A. Padmanabhan, K. Muraleedharan, N.P. Gurao and G. Wilde, Grain size and grain boundary character distribution in ultra-fine grained (ECAP) nickel. Mater. Sci. Eng.: A 491 (2008), pp. 1–7. doi: 10.1016/j.msea.2007.11.072
  • Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon, The process of grain refinement in equal-channel angular pressing. Acta Mater. 46 (1998), pp. 3317–3331. doi: 10.1016/S1359-6454(97)00494-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.