411
Views
10
CrossRef citations to date
0
Altmetric
Part A: Materials Science

On the tensile flow stress response of 304 HCu stainless steel employing a dislocation density based model and electron backscatter diffraction measurements

ORCID Icon, , & ORCID Icon
Pages 312-336 | Received 30 Jan 2019, Accepted 06 Oct 2019, Published online: 22 Oct 2019

References

  • X.M. Li, Y. Zou, Z.W. Zhang, and Z.-D. Zou, Microstructure evolution of a novel super 304H steel aged at high temperatures. Mater. Trans. 51 (2010), pp. 305–309. doi: 10.2320/matertrans.MC200916
  • P. La, F. Wei, X. Lu, T. Shi, C. Chu, Y. Wei, and H. Wang, Microstructures and tensile properties of 304 steel with dual nanocrystalline and microcrystalline austenite content prepared by aluminothermic reaction casting. Phil. Mag. Lett. 94 (2014), pp. 478–486. doi: 10.1080/09500839.2014.932456
  • I. Sen, E. Amankwah, N.S. Kumar, E. Fleury, K. Oh-ishid, K. Hono, and U. Ramamurty, Microstructure and mechanical properties of annealed SUS 304H austenitic stainless steel with copper. Mater. Sci. Eng. A 528 (2011), pp. 4491–4499. doi: 10.1016/j.msea.2011.02.019
  • G. Srinivasan, H.C. Dey, V. Ganesan, A.K. Bhaduri, S.K. Albert, and K. Laha, Choice of welding consumable and procedure qualification for welding of 304HCu austenitic stainless steel boiler tubes for Indian advanced ultra super critical power plant. Weld. World 60 (2016), pp. 1029–1036. doi: 10.1007/s40194-016-0359-z
  • C. Chi, H. Yu, J. Dong, X. Xie, Z. Cui, X. Chen, and F. Lin, Strengthening effect of Cu-rich phase precipitation in 18Cr9Ni3CuNbN austenitic heat-resisting steel. Acta Metall. Sinica 24 (2011), pp. 141–147.
  • V. Ganesan, K. Laha, and A.K. Bhaduri, Creep rupture properties of indigenously developed 304HCu austenitic stainless steel. Trans. Indian Inst. Met. 69 (2016), pp. 247–251. doi: 10.1007/s12666-015-0779-2
  • A. Mathur, O.P. Bhutani, T. Jayakumar, D.K. Dubey, and S.C. Chetal, Advances in materials technology for fossil power plants, Proceedings of 7th International Conference on Advances in Materials Technology for Fossil Power Plants, ASM International, Waikoloa, Hawaii, USA, 2013, pp. 53–59.
  • H. Tripathy, R. Subramanian, R.N. Hajra, A.K. Rai, M. Rengachari, S. Saibaba, and T. Jayakumar, Calorimetric investigation of thermal stability of 304HCu (Fe-17.7Cr-9.3Ni-2.95Cu-0.91Mn-0.58Nb-0.24Si-0.1C-0.12N-Wt Pct) austenitic stainless steel. Metall. Mater. Trans. E 3 (2016), pp. 234–249.
  • T. Sourisseau, E. Chauveau, and B. Baroux, Mechanism of copper action on pitting phenomena observed on stainless steels in chloride media. Corros. Sci. 47 (2005), pp. 1097–1117. doi: 10.1016/j.corsci.2004.05.024
  • T. Ujiro, S. Satoh, R.W. Staehle, and W.H. Smyrl, Effect of alloying Cu on the corrosion resistance of stainless steels in chloride media. Corros. Sci. 43 (2001), pp. 2185–2200. doi: 10.1016/S0010-938X(01)00008-7
  • J.W. Bai, P.P. Liu, Y.M. Zhu, X.M. Li, C.Y. Chi, H.Y. Yu, X.S. Xie, and Q. Zhan, Coherent precipitation of copper in super 304H austenite steel. Mater. Sci. Eng. A 584 (2013), pp. 57–62. doi: 10.1016/j.msea.2013.06.082
  • V.T. Ha and W.S. Jung, Creep behavior and microstructure evolution at 750°C in a new precipitation strengthened heat resistant austenitic stainless steel. Mater. Sci. Eng. A 558 (2012), pp. 103–111. doi: 10.1016/j.msea.2012.07.090
  • K.K. Alaneme, S.M. Hong, I. Sen, E. Fleury, and U. Ramamurty, Effect of copper addition on the fracture and fatigue crack growth behavior of solution heat-treated SUS 304H austenitic steel. Mater. Sci. Eng. A 527 (2010), pp. 4600–4604. doi: 10.1016/j.msea.2010.04.018
  • S.P. Tan, Z.H. Wang, S.C. Cheng, Z.D. Liu, J.C. Han, and W.T. Fu, Effect of Cu content on aging precipitation behaviors of Cu-rich phase in Fe-Cr-Ni alloy. J. Iron Steel Res. Int. 17 (2010), pp. 63–68. doi: 10.1016/S1006-706X(10)60101-X
  • S.D. Yadav, S. Kalácska, M. Dománková, D.C. Yubero, R. Resel, I. Groma, C. Beal, B. Sonderegger, C. Sommitsch, and C. Poletti, Evolution of the substructure of a novel 12% Cr steel under creep conditions. Mater. Charact. 115 (2016), pp. 23–31. doi: 10.1016/j.matchar.2016.03.015
  • M. Fukuda, E. Saito, H. Semba, J. Iwasaki, S. Izumi, S. Takano, T. Takahashi, and Y. Sumiyoshi, Advanced USC technology development in Japan, Proceedings of 7th International Conference on Advances in Materials Technology for Fossil Power Plants, ASM International, Waikoloa, Hawaii, USA, 2013, pp. 24–40.
  • M.P. Petkov, J. Hu, and A.C.F. Cocks, Self-consistent modelling of cyclic loading and relaxation in austenitic 316H stainless steel. Phil. Mag. 99 (2018), 789–834. doi: 10.1080/14786435.2018.1556407
  • S.D. Yadav, B. Sonderegger, M. Stracey, and C. Poletti, Modelling the creep behaviour of tempered martensitic steel based on a hybrid approach. Mater. Sci. Eng. A 662 (2016), pp. 330–341. doi: 10.1016/j.msea.2016.03.071
  • Y. Estrin, H. Braasch, and Y. Brechet, A dislocation density based constitutive model for cyclic deformation. J. Eng. Mater. Technol. 118 (1986), pp. 441–447. doi: 10.1115/1.2805940
  • S.D. Yadav, T. Scherer, G.V.P. Reddy, K. Laha, S.K. Albert, and C. Poletti, Creep modelling of P91 steel employing a microstructural based hybrid concept. Eng. Fract. Mech. 200 (2018), pp. 104–114. doi: 10.1016/j.engfracmech.2018.07.027
  • P. Ludwik, Elements der technologischen Mechanik, Springer, Leipzig, 1909. ISBN 978-3-662-40293-1.
  • J.H. Hollomon, Tensile deformation. Trans. Metall. Soc. 162 (1945), pp. 268–270.
  • E. Voce, The relationship between stress and strain for homogeneous deformation. J. Inst. Met. 74 (1948), pp. 537–562.
  • H.W. Swift, Plastic instability under plane stress. J. Mech. Phys. Solids 1 (1952), pp. 1–18. doi: 10.1016/0022-5096(52)90002-1
  • E. Voce, A practical strain hardening function. Metallurgia 51 (1955), pp. 219–226.
  • D.C. Ludwigson, Modified stress-strain relation for FCC metals and alloys. Metall. Trans. 2 (1971), pp. 2825–2828. doi: 10.1007/BF02813258
  • U.F. Kocks, Laws for work-hardening and low-temperature creep. J. Eng. Mater. Technol. 98 (1976), pp. 76–85. doi: 10.1115/1.3443340
  • H. Mecking and U.F. Kocks, Kinetics of flow and strain-hardening. Acta Metall. 29 (1981), pp. 1865–1875. doi: 10.1016/0001-6160(81)90112-7
  • Y. Estrin and H. Mecking, A unified phenomenological description of work hardening and creep based on one-parameter models. Acta Metall. 32 (1984), pp. 57–70. doi: 10.1016/0001-6160(84)90202-5
  • U.F. Kocks and H. Mecking, Physics and phenomenology of strain hardening: the FCC case. Prog. Mater Sci. 48 (2003), pp. 171–273. doi: 10.1016/S0079-6425(02)00003-8
  • Y. Estrin and L.P. Kubin, Local strain hardening and nonuniformity of plastic deformation. Acta Metall. 34 (1986), pp. 2455–2464. doi: 10.1016/0001-6160(86)90148-3
  • F. Barlat, M.V. Glazov, J.C. Brem, and D.J. Lege, A simple model for dislocation behavior, strain and strain rate hardening evolution in deforming aluminum alloys. Int. J. Plast. 18 (2002), pp. 919–939. doi: 10.1016/S0749-6419(01)00015-8
  • J. Christopher and B.K. Choudhary, Kinetics of uniaxial tensile flow and work hardening behavior of type 316L(N) austenitic stainless steel in the framework of two-internal-variable approach. Metall. Mater. Trans. A 46 (2015), pp. 674–687. doi: 10.1007/s11661-014-2660-z
  • H.J. Frost and M.F. Ashby, Deformation-mechanism maps-the plasticity and creep of metals and ceramics, Pergamon Press, 1982.
  • Y. Bergström, The plastic deformation of metals-a dislocation model and its applicability. Rev Powder Metall Phys Ceramics 2/3 (1983), pp. 79–265.
  • Y. Bergström, Dislocation model for the stress-strain behaviour of polycrystalline α-Fe with special emphasis on the variation of the densities of mobile and immobile dislocation. Mater. Sci. Eng. 5 (1970), pp. 193–200. doi: 10.1016/0025-5416(70)90081-9
  • H. Mecking, Work-hardening in tension and fatigue, in Thompson A.W., ed., AIME, New York, 1977; pp. 67–68.
  • Y. Estrin, Dislocation density-related constitutive modeling, in Unified Constitutive Laws of Plastic Deformation, A.S. Krausz and K. Krausz, eds., Academic Press, San Diego, CA, 1996. pp. 69–106.
  • E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo, A thermodynamic theory for dislocation cell formation and misorientation in metals. Acta Mater. 60 (2012), pp. 4370–4378. doi: 10.1016/j.actamat.2012.05.003
  • L.-E. Lindgren, K. Domkin, and S. Hansson, Dislocations, vacancies and solute diffusion in physical based plasticity model for AISI 316L. Mech. Mater. 40 (2008), pp. 907–919. doi: 10.1016/j.mechmat.2008.05.005
  • L.-E. Lindgren, Q. Hao, and D. Wedberg, Improved and simplified dislocation density based plasticity model for AISI 316 L. Mech. Mater. 108 (2017), pp. 68–76. doi: 10.1016/j.mechmat.2017.03.007
  • H. Dini, A. Svoboda, N.-E. Andersson, E. Ghassemali, L.-E. Lindgren, and A.E.W. Jarfors, Optimization and validation of a dislocation density based constitutive model for as-cast Mg-9%Al-1%Zn. Mater. Sci. Eng. A 710 (2018), pp. 17–26. doi: 10.1016/j.msea.2017.10.081
  • P.V. Sivaprasad, S. Venugopal, and S. Venkadesan, Tensile flow and work-hardening behavior of a Ti-modified austenitic stainless steel. Metall. Mater. Trans. A 28 (1997), pp. 171–178. doi: 10.1007/s11661-997-0092-8
  • S.D. Yadav, M. El-Tahawy, S. Kalácska, M. Dománková, D.C. Yubero, and C. Poletti, Characterizing dislocation configurations and their evolution during creep of a new 12%Cr. Mater. Charact. 134 (2017), pp. 387–397. doi: 10.1016/j.matchar.2017.11.017
  • V. Shankar, S.D. Yadav, and K. Mariappan, Influence of W on the substructural evolution of reduced activation ferritic/martensitic (RAFM) steels during creep-fatigue interactions. Mater. Lett. 234 (2019), pp. 257–260. doi: 10.1016/j.matlet.2018.09.110
  • M. Koyama, T. Sawaguchi, and K. Tsuzaki, Overview of dynamic strain aging and associated phenomena in Fe-Mn-C austenitic steels. ISIJ Int. 58 (2018), pp. 1383–1395. doi: 10.2355/isijinternational.ISIJINT-2018-237
  • C.Y. Chi, H.Y. Yu, J.X. Dong, W.Q. Liu, S.C. Cheng, Z.D. Liu, and X.S. Xie, The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe–Cr–Ni type austenitic heat resistant steel for USC power plant application. Prog. Nat. Sci. Mater. 22 (2012), pp. 175–185. doi: 10.1016/j.pnsc.2012.05.002
  • N. Ghoniem, J. Matthews, and R. Amodeo, A dislocation model for creep in engineering materials. Res. Mech. 29 (1990), pp. 197–219.
  • D. Rivera, Y. Huang, G. Po, and N.M. Ghoniem, A dislocation-based crystal viscoplasticity model with application to micro-engineered plasma-facing materials. J. Nucl. Mater. 485 (2017), pp. 231–242. doi: 10.1016/j.jnucmat.2016.12.034
  • J.M. Salazar, O. Politano, and D. Walgraef, On the dynamics of dislocation patterning. Mater. Sci. Eng. A 234–236 (1997), pp. 397–400. doi: 10.1016/S0921-5093(97)00262-1
  • G.R. Stewart, Static and Dynamic Aging and Softening in 304 Stainless Steel, Department of Mining, Metals and Materials Engineering, McGill University, Montreal, Canada, January 2004, ISBN: 0-612-98378-1.
  • M. Koyama, T. Sawaguchi, and K. Tsuzaki, Inverse grain size dependence of critical strain for serrated flow in a Fe–Mn–C twinning-induced plasticity steel. Phil. Mag. Lett. 92 (2011), pp. 145–152. doi: 10.1080/09500839.2011.640645
  • K. Tsuzaki, T. Hori, T. Maki, and I. Tamura, Dynamic strain aging during fatigue deformation in type 304 austenitic stainless steel. Mater. Sci. Eng. 61 (1983), pp. 247–260. doi: 10.1016/0025-5416(83)90107-6
  • J.H. Shim, E. Kozeschnik, W.S. Jung, S.C. Lee, D.I. Kim, J.Y. Suh, Y.S. Lee, and Y.W. Cho, Numerical simulation of long-term precipitate evolution in austenitic heat-resistant steels. Calphad 34 (2010), pp. 105–112. doi: 10.1016/j.calphad.2010.01.001
  • F. Roters, D. Raabe, and G. Gottstein, Work hardening in heterogeneous alloys-a microstructural approach based on three internal state variables. Acta Mater. 48 (2000), pp. 4181–4189. doi: 10.1016/S1359-6454(00)00289-5
  • A. Ma, F. Roters, and D. Raabe, A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations. Acta Metall. 54 (2006), pp. 2169–2179.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.