97
Views
11
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Electric field induced non-linear multisubband electron mobility in V-shaped asymmetric double quantum well structure

, , &
Pages 512-527 | Received 06 Jan 2019, Accepted 28 Oct 2019, Published online: 01 Dec 2019

References

  • L.R. Ram-Mohan, D. Dossa, I. Vurgaftman, and J.R. Meyer, Book Chapter: wave function engineering: a new paradigm in quantum nanostructure modeling, in Handbook of Nanostructured Materials and Nanotechnology, Vol. 2, H.S. Nalwa, ed., Academic Press, New York, 1999. pp. 707–739.
  • R. Ferreira and G. Bastard, Tunnelling and relaxation in semiconductor double quantum wells. Rep. Prog. Phys 60 (1997), pp. 345–387. doi: 10.1088/0034-4885/60/3/002
  • A. Palevski, F. Beltram, F. Capasso, L. Pfeiffer and K.W. West, Resistance resonance in coupled potential wells. Phys. Rev. Lett 65 (1990), pp. 1929–1932. doi: 10.1103/PhysRevLett.65.1929
  • Y. Ohno, M. Tsuchiya and H. Sakaki, New functional field-effect transistor based on wave function modulation in δ-doped double quantum wells. Electron. Lett. 29 (1993), pp. 375–376. doi: 10.1049/el:19930252
  • E.H. Kim, Y.H. Shin, Y. Kim and S.J. Noh, Nonlinear optical transitions of GaAs/AlGaAs asymmetric double-well structures. Appl. Phys. Lett 89 (2006), pp. 032114. doi: 10.1063/1.2220533
  • K. Lee, S.K. Noh and S.K. Chang, Photoluminescence study of magnetic-field-induced excitonic transitions in AlxGa1−xAs/GaAs asymmetric double quantum wells. Phys. Rev. B 76 (2007), pp. 073305. doi: 10.1103/PhysRevB.76.073305
  • B. Chen, K. Guo, R. Wang and Z. Zhang, Optical second harmonic generation in asymmetric double triangular quantum wells. Superlattice. Microst 45 (2009), pp. 125–133. doi: 10.1016/j.spmi.2009.01.005
  • J.K. Choi, N. Vagidov, A. Sergeev, S. Kalchmair, G. Strasser, F. Vasko and V. Mitin, Asymmetrically doped GaAs/AlGaAs double-quantum-well structure for voltage tunable infrared detection. Jpn. J. Appl. Phys 51 (2012), pp. 074004.
  • G. Nardin, G. Moody, R. Singh, T.M. Autry and H. Li, Coherent excitonic coupling in an asymmetric double InGaAs quantum well arises from many-body effects. Phys. Rev. Lett 112 (2014), pp. 046402. doi: 10.1103/PhysRevLett.112.046402
  • R.K. Nayak, S. Das, A.K. Panda and T. Sahu, Nonmonotonous electron mobility due to structurally induced resonant coupling of subband states in an asymmetric double quantum well. AIP. Adv. 5 (2015), pp. 117232. doi: 10.1063/1.4936632
  • I. Karabulut and E. Paspalakis, The role of permanent dipoles on the intensity-dependent nonlinear optical properties in asymmetric coupled quantum wells under a static electric field. Physica E 81 (2016), pp. 294–301. doi: 10.1016/j.physe.2016.03.033
  • H.S. Aydinoglu, S. Sakiroglu, H. Sari, F. Ungan and I. Sokmen, Nonlinear optical properties of asymmetric double-graded quantum wells. Philos. Mag. 98 (2018), pp. 2151–2163. doi: 10.1080/14786435.2018.1476785
  • R. Fletcher, M. Tsaousidou, T. Smith, P.T. Coleridge, Z.R. Wasilewski and Y. Feng, Two-band electron transport in a double quantum well. Physical Rev. B 71 (2005), pp. 155310. doi: 10.1103/PhysRevB.71.155310
  • K. Muraki, N. Kumada, T. Saku and Y. Hirayama, n+-GaAs back-gated double-quantum-well structures with full density control. Jpn. J. Appl. Phys 39 (2000), pp. 2444–2447. doi: 10.1143/JJAP.39.2444
  • N.C. Mamani, G.M. Gusev, O.E. Raichev, T.E. Lamas and A.K. Bakarov, Nonlinear transport and oscillating magnetoresistance in double quantum wells. Phys. Rev. B 80 (2009), pp. 075308. doi: 10.1103/PhysRevB.80.075308
  • D. Laroche, S.H. Huang, E. Nielsen, C.W. Liu, J.Y. Li and T.M. Lu, Magneto-transport of an electron bilayer system in an undoped Si/SiGe double-quantum-well heterostructure. Appl. Phys. Lett 106 (2015), pp. 143503. doi: 10.1063/1.4917296
  • N. Sahoo, A.K. Panda and T. Sahu, Electron mobility in AlxGa1−xAs based square-parabolic double quantum well HEMT structure − effect of asymmetric doping profile. Phys. Status Solidi B 254 (2017), pp. 1700221. doi: 10.1002/pssb.201700221
  • H. Dakhlaoui, Linear and nonlinear optical absorption coefficients and refractive index changes in GaN/AlxGa1-xN double quantum wells operating at 1.55 µm. J. Appl. Phys 117 (2015), pp. 135705. doi: 10.1063/1.4916752
  • G. Liu, K. Guo, Z. Zhang, H. Hassanbadi and L. Lu, Electric field effects on nonlinear optical rectification in symmetric coupled AlxGa1-xAs/GaAs quantum wells. Thin Solid Films 662 (2018), pp. 27–32. doi: 10.1016/j.tsf.2018.07.026
  • N.C. Mamani, C.A. Duarte, G.M. Gusev, A.A. Quivy and T.E. Lamas, Magnetotransport in AlxGax-1As quantum wells with different potential shapes. Braz. J. Phys 36 (2006), pp. 336–339. doi: 10.1590/S0103-97332006000300027
  • K.H. Gao, G. Yu, Y.M. Zhou, W.Z. Zhou, T. Lin, J.H. Chu, N. Dai, A.J.S. Thorpe and D.G. Austing, Transport properties of AlGaAs/GaAs parabolic quantum wells. J. Appl. Phys 105 (2009), pp. 013712. doi: 10.1063/1.3063690
  • C. Chang, H. Li and T. Lu, High efficiency InGaN/GaN light emiting diodes with asymmetric triangular multiple quantum wells. Appl. Phys. Lett 104 (2014), pp. 091111. doi: 10.1063/1.4867023
  • U. Yesilgul, F. Ungan, E. Kasapoglu, H. Sari and I. Sokmen, Linear and nonlinear optical properties in asymmetric double semi-V-shaped quantum well. Physica B 475 (2015), pp. 110–116. doi: 10.1016/j.physb.2015.07.011
  • N.T. Tien, N.N.T. Hung, T.T. Nguyen and P.T.B. Thao, Linear intersubband optical absorption in the semi-parabolic quantum wells based on AlN/AlGaN/AlN under a uniform electric field. Physica B 519 (2017), pp. 63–68. doi: 10.1016/j.physb.2017.05.038
  • Z. Yang, R. Li, Q. Wei, T. Yu, Y. Zhang, W. Chen and X. Hu, Analysis of optical gain property in the InGaN/GaN triangular shaped quantum well under the piezoelectric field. Appl. Phys. Lett 94 (2009), pp. 061120. doi: 10.1063/1.3075862
  • E. Ozturk, Nonlinear intersubband transitions in different shaped quantum wells under intense laser field. Superlatt. Microst 82 (2015), pp. 303–312. doi: 10.1016/j.spmi.2015.01.007
  • S. Baskoutas, C. Garoufalis and A.F. Terzis, Linear and nonlinear optical absorption coefficients in inverse parabolic quantum wells under static electric field. Eur. Phys. J. B 84 (2011), pp. 241–247. doi: 10.1140/epjb/e2011-20470-9
  • S. Ma, Y. Qu and S. Ban, Intersubband optical absorption of electrons in double parabolic quantum wells of AlxGa1-xAs / AlyGa1-yAs. Chinese Phys. B 27 (2018), pp. 027103. doi: 10.1088/1674-1056/27/2/027103
  • S. Palo, T. Sahu and A.K. Panda, Effect of non-square structure potential on the multisubband electron mobility in double quantum well structure. Physica B 545 (2018), pp. 62–68. doi: 10.1016/j.physb.2018.05.043
  • S. Adachi, Gaas, AlAs, and AlxGa1-xAs: material parameters for use in research and device applications. J. Appl. Phys 58 (1985), pp. R1–R29. doi: 10.1063/1.336070
  • T. Ando, A.B. Fowler and F. Stern, Electronic properties of two-dimensional systems. Rev. Mod. Phys 54 (1982), pp. 437–672. doi: 10.1103/RevModPhys.54.437
  • Y. Ando and T. Itoh, Calculation of transmission tunneling current across arbitrary potential barriers. J. Appl. Phys 61 (1987), pp. 1497–1502. doi: 10.1063/1.338082
  • R. Fletcher, E. Zaremba, M. D’Iorio, C.T. Foxon and J.J. Harris, Persistent photoconductivity and two band-effects in GaAs/AlxGa1-xAs heterojunctions. Phys. Rev. B 41 (1990), pp. 10649–10666. doi: 10.1103/PhysRevB.41.10649
  • A.K. Saxena and A.R. Adams, Determination of alloy scattering potential in Ga1-xAlxAs alloys. J. Appl. Phys 58 (1985), pp. 2640–2645. doi: 10.1063/1.335895
  • E.I. Rogacheva, O.N. Nashchekina, S.N. Grigorov, M.A. Us, M.S. Dresselhaus and S.B. Cronin, Oscillatory behavior of the transport properties in PbTe quantum wells. Nanotechnology 14 (2003), pp. 53–59. doi: 10.1088/0957-4484/14/1/313
  • E.P. Pokatilov, D.L. Nika, A.S. Askerov and A.A. Balandin, Size quantized oscillations of the electron mobility limited by the optical and acoustic phonons in the nanoscale heterostructures. J. Appl. Phys 102 (2007), pp. 054304. doi: 10.1063/1.2777105
  • K.S. Yi, K. Trivedi, H.C. Floresca, H. Yuk, W. Hu and M.J. Kim, Room-temperature quantum confinement effects in transport properties of ultrathin Si nanowire field effect transistors. Nano Lett. 11 (2011), pp. 5465–5470. doi: 10.1021/nl203238e

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.