1,076
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Evolution of triple junctions’ network during severe plastic deformation of copper alloys – a discrete stochastic modelling

&
Pages 467-485 | Received 10 May 2019, Accepted 31 Oct 2019, Published online: 03 Dec 2019

References

  • P. Ghosh, O. Renk, and R. Pippan, Microtexture analysis of restoration mechanisms during high pressure torsion of pure nickel, Mater. Sci. Eng. A. 684 (2017), pp. 101–109. doi: 10.1016/j.msea.2016.12.032
  • S. Patala, J.K. Mason, and C.A. Schuh, Improved representations of misorientation information for grain boundary science and engineering, Prog. Mater. Sci. 57 (2012), pp. 1383–1425. doi: 10.1016/j.pmatsci.2012.04.002
  • S. Kobayashi, T. Maruyama, S. Tsurekawa, and T. Watanabe, Grain boundary engineering based on fractal analysis for control of segregation-induced intergranular brittle fracture in polycrystalline nickel, Acta Mater. 60 (2012), pp. 6200–6212. doi: 10.1016/j.actamat.2012.07.065
  • A. Morozova, E.N. Borodin, V. Bratov, S. Zherebtsov, A. Belyakov, and R. Kaibyshev, Grain refinement kinetics in a low alloyed Cu–Cr–Zr alloy subjected to large strain deformation, Materials 10 (2017), pp. 1394. doi: 10.3390/ma10121394
  • T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci. 60 (2014), pp. 130–207. doi: 10.1016/j.pmatsci.2013.09.002
  • G.S. Rohrer, Measuring and interpreting the structure of grain-boundary networks, J. Am. Ceram. Soc. 94(3) (2011), pp. 633–646. doi: 10.1111/j.1551-2916.2011.04384.x
  • M. Li and T. Xu, Topological and atomic scale characterization of grain boundary networks in polycrystalline and nanocrystalline materials, Prog. Mater. Sci. 56 (2011), pp. 864–899. doi: 10.1016/j.pmatsci.2011.01.011
  • G.S. Rohrer and H.M. Miller, Topological characteristics of plane sections of polycrystals, Acta Mater. 58 (2010), pp. 3805–3814. doi: 10.1016/j.actamat.2010.03.028
  • T. Wanner, E.R. Fuller Jr, and D.M. Saylor, Homology metrics for microstructure response fields in polycrystals, Acta Mater. 58 (2010), pp. 102–110. doi: 10.1016/j.actamat.2009.08.061
  • A. Vinogradov and Y. Estrin, Analytical and numerical approaches to modelling of severe plastic deformation, Prog. Mater. Sci. 95 (2018), pp. 172–242. doi: 10.1016/j.pmatsci.2018.02.001
  • E.N. Borodin and V. Bratov, Non-equilibrium approach to prediction of microstructure evolution for metals undergoing severe plastic deformation, Mater. Charact. 141 (2018), pp. 267–278. doi: 10.1016/j.matchar.2018.05.002
  • A. Morozova and R. Kaibyshev, Grain refinement and strengthening of a Cu–0.1Cr–0.06Zr alloy subjected to equal channel angular pressing. Philos. Mag. 97 (2017), pp. 2053–2076. doi: 10.1080/14786435.2017.1324649
  • A. Vinogradov, Mechanical properties of ultrafine-grained metals: new challenges and perspectives, Adv. Eng. Mater. 17 (2015), pp. 1710–1722. doi: 10.1002/adem.201500177
  • V. Bratov and E.N. Borodin, Comparison of dislocation density based approaches for prediction of defect structure evolution in aluminium and copper processed by ECAP, Mat. Sci. Eng. A. 631 (2015), pp. 10–17. doi: 10.1016/j.msea.2015.02.019
  • I. Sabirov, M.Y. Murashkin, and R.Z. Valiev, Nanostructured aluminium alloys produced by severe plastic deformation: new horizons in development, Mat. Sci. Eng. A. 560 (2013), pp. 1–24. doi: 10.1016/j.msea.2012.09.020
  • R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mat. Sci. 45 (2000), pp. 103–189. doi: 10.1016/S0079-6425(99)00007-9
  • R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, and A. Bachmaier, Saturation of fragmentation during severe plastic deformation, Annu. Rev. Mater. Res. 40 (2010), pp. 319–343. doi: 10.1146/annurev-matsci-070909-104445
  • I.J. Beyerlein and L.S. Tóth, Texture evolution in equal-channel angular extrusion, Prog. Mater. Sci. 54 (2009), pp. 427–510. doi: 10.1016/j.pmatsci.2009.01.001
  • A. Belyakov, T. Sakai, H. Miura, and K. Tsuzaki, Grain refinement in copper under large strain deformation, Phil. Mag. A 81 (2001), pp. 2629–2643. doi: 10.1080/01418610108216659
  • E.N. Borodin and A.E. Mayer, Localization of plastic flow at dynamic channel angular pressing, Tech. Phys. 58(8) (2013), pp. 1159–1163. doi: 10.1134/S1063784213080070
  • E.N. Borodin and A.E. Mayer, Structural model of mechanical twinning and its application for modeling of the severe plastic deformation of copper rods in Taylor impact tests, Int. J. Plast. 74 (2015), pp. 141–157. doi: 10.1016/j.ijplas.2015.06.006
  • M. Frary and C.A. Schuh, Percolation and statistical properties of low- and high-angle interface networks in polycrystalline ensembles, Phys. Rev. B. 69 (2004), pp. 134115. doi: 10.1103/PhysRevB.69.134115
  • L.J. Grady and J.R. Polimeni, Discrete Calculus, Springer-Verlag, London, 2010.
  • Voro++ free software available at http://math.lbl.gov/voro++
  • VoroC++Analyzer (VCA) is available for free at https://mapos.manchester.ac.uk
  • E.N. Borodin, A. Morozova, V. Bratov, A. Belyakov, and A.P. Jivkov, Experimental and numerical analyses of microstructure evolution of Cu-Cr-Zr alloys during severe plastic deformation, Mater. Charact. 156 (2019), pp. 109849. doi: 10.1016/j.matchar.2019.109849
  • E.M. Lifshitz and L.P. Pitaevskii, Physical Kinetics: Volume 10 (Course of Theoretical Physics), Butterworth Heinemann, Oxford, 1981.
  • E.I. Galindo-Nava and P.E.J. Rivera-Dıaz-del-Castillo, A thermodynamic theory for dislocation cell formation and misorientation in metals, Acta Mater. 60 (2012), pp. 4370–4378. doi: 10.1016/j.actamat.2012.05.003
  • E.I. Galindo-Nava and P.E.J. Rivera-Dıaz-del-Castillo, Modelling plastic deformation in BCC metals: dynamic recovery and cell formation effects, Mater. Sci. Eng., A 558 (2012), pp. 641–648. doi: 10.1016/j.msea.2012.08.068
  • R. Lapovok, F.H. Dalla Torre, J. Sandlin, C.H.J. Davies, E.V. Pereloma, P.F. Thomson, and Y. Estrin, Gradient plasticity constitutive model reflecting the ultrafine micro-structure scale: The case of severely deformed copper, J. Mech. Phys. Solids. 53 (2005), pp. 729–747. doi: 10.1016/j.jmps.2004.11.006