382
Views
14
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Impurity-related optical response in a 2D and 3D quantum dot with Gaussian confinement under intense laser field

, , , &
Pages 619-641 | Received 19 Aug 2019, Accepted 13 Nov 2019, Published online: 27 Nov 2019

References

  • P. Harrison, Quantum Wells, Wires, and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 3rd ed., Wiley, New York, 2010.
  • P.Y. Yu and M. Cardona, Fundamentals of Semiconductors. Physics and Materials Properties, 4th ed., Springer, Berlin, 2010.
  • S.A.A. Kohl, R.L. Restrepo, M.E. Mora-Ramos, and C.A. Duque, Shallow-impurity-related binding energy and linear optical absorption in ring-shaped quantum dots and quantum-well wires under applied electric field, Phys. Status Solidi B 252 (2015), pp. 786–794.
  • L.E. Brus, Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, J. Chem. Phys. 80 (pp7) (1984), pp. 4403.
  • G.W. Bryant, Electronic structure of ultrasmall quantum-well, Phys. Rev. Lett. 59 (1987), pp. 1140–1443.
  • D. Babić, R. Tsu, and R.F. Greene, Ground-state energies of one- and two-electron silicon dots in an amorphous silicon dioxide matrix, Phys. Rev. B 45 (1992), pp. 14150–14155.
  • M. Iwamatsu, M. Fujiwara, N. Happo, and K. Horii, Effects of dielectric discontinuity on the ground-state energy of charged Si dots covered with a SiO2 layer, J. Phys.: Condens. Matter 9 (1997), pp. 9881–9892.
  • D. Pfannkuche, V. Gudmundsson, and P.A. Maksym, Comparison of a Hartree, a Hartree-Fock, and an exact treatment of quantum-dot helium, Phys. Rev. B 47 (1993), pp. 2244–2250.
  • P. Hawrylak, Single-electron capacitance spectroscopy of few-electron artificial atoms in a magnetic field: Theory and experiment, Phys. Rev. Lett. 71 (1993), pp. 3347–3350.
  • M. Macucci, K. Hess, and G.J. Iafrate, Numerical simulation of shell-filling effects in circular quantum dots, Phys. Rev. B 55 (1997), pp. R4879–R4882.
  • H.M. Müller and S.E. Koonin, Phase transitions in quantum dots, Phys. Rev. B 54 (1996), pp. 14532–14539.
  • F.M. Peeters and V.A. Schweigert, Two-electron quantum disks, Phys. Rev. B 53 (1996), pp. 1468–1474.
  • M. Fujito, A. Natori, and H. Yasunaga, Many-electron ground states in anisotropic parabolic quantum dots, Phys. Rev. B 53 (1996), pp. 9952–9958.
  • J.-L. Zhu, Z.-Q. Li, J.-Z. Yu, K. Ohno, and Y. Kawazoe, Size and shape effects of quantum dots on two-electron spectra, Phys. Rev. B 55 (1997), pp. 15819–15823.
  • M. Eto, Electronic structures of few electrons in a quantum dot under magnetic fields, Jpn. J. Appl. Phys. 36 (1997), pp. 3924–3927.
  • M. Koskinen, M. Manninen, and S.M. Reimann, Hund's rules and spin density waves in quantum dots, Phys. Rev. Lett. 79 (1997), pp. 1389–1392.
  • O. Steffens, U. Rössler, and M. Suhrke, Generalized Hund's rule in the addition spectrum of a quantum dot, Europhys. Lett. 42 (1998), pp. 529–534.
  • H.K. Sharma, A. Boda, B. Boyacioglu, and A. Chatterjee, Electronic and magnetic properties of a two-electron Gaussian GaAs quantum dot with spin-Zeeman term: A study by numerical diagonalization, J. Magn. Magn. Mater. 469 (2019), pp. 171–177.
  • W.-F. Xie, Two interacting electrons in a spherical Gaussian confining potential quantum well, Commun. Theor. Phys. 42 (2004), pp. 151–156.
  • J. Adamowski, M. Sobkowicz, B. Szafran, and S. Bednarek, Electron pair in a Gaussian confining potential, Phys. Rev. B 62 (2000), pp. 4234–4237.
  • A.A. Louis, P.G. Bolhuis, and J.P. Hansen, Mean-field fluid behavior of the Gaussian core model, Phys. Rev. E 62 (2000), pp. 7961–7972.
  • S. Prestipino, F. Saija, and P.V. Giaquinta, Phase diagram of the Gaussian-core model, Phys. Rev. E 71(R) (pp4) (2005), pp. 050102.
  • S. Yang, X. Wang, and S. Das Sarma, Generic Hubbard model description of semiconductor quantum-dot spin qubits, Phys. Rev. B 83(R) (pp4) (2011), pp. 161301.
  • Q. Xu, W. Cai, W. Li, T.S. Sreeprasad, Z. He, W.-J. Ong, and N. Li, Two-dimensional quantum dots: Fundamentals, photoluminescence mechanism and their energy and environmental applications, Mater. Today Energy 10 (2018), pp. 222–240.
  • B. Kong, C. Selomulya, G. Zheng, and D. Zhao, New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications, Chem. Soc. Rev. 44 (2015), pp. 7997–8018.
  • R. Freeman and I. Willner, Optical molecular sensing with semiconductor quantum dots (QDs), Chem. Soc. Rev. 41 (2012), pp. 4067–4085.
  • T.S. Sreeprasad, A.A. Rodriguez, J. Colston, A. Graham, E. Shishkin, V. Pallem, and V. Berry, Electron-tunneling modulation in percolating network of graphene quantum dots: Fabrication, phenomenological understanding, and humidity/pressure sensing applications, Nano Lett. 13 (2013), pp. 1757–1763.
  • L. Bai, N. Xue, Y. Zhao, X. Wang, C. Lu, and W. Shi, Dual-mode emission of single-layered graphene quantum dots in confined nanospace: Anti-counterfeiting and sensor applications, Nano Res 11 (2018), pp. 2034–2045.
  • Y. Zhu, L. Peng, Z. Fang, C. Yan, X. Zhang, and G. Yu, Structural engineering of 2D nanomaterials for energy storage and catalysis, Adv. Mater. 30 (pp19) (2018), pp. 1706347.
  • X. Wang, G. Sun, N. Li, and P. Chen, Quantum dots derived from two-dimensional materials and their applications for catalysis and energy, Chem. Soc. Rev. 45 (2016), pp. 2239–2262.
  • S. Hu, A. Trinchi, P. Atkin, and I. Cole, Tunable photoluminescence across the entire visible spectrum from carbon dots excited by White light, Angew. Chem. Int. Ed. 54 (pp6) (2015), pp. 2970.
  • L. Wang, B. Li, F. Xu, Y. Li, Z. Xu, D. Wei, Y. Feng, Y. Wang, D. Jia, and Y. Zhou, Visual in vivo degradation of injectable hydrogel by real-time and non-invasive tracking using carbon nanodots as fluorescent indicator, Biomaterials 145 (2017), pp. 192–206.
  • I. Popescu, M. Hristache, S.-S. Ciobanu, M.G. Barseghyan, J.A. Vinasco, A.L. Morales, A. Radu, and C.A. Duque, Size or shape - what matters most at the nanoscale? Comp. Mater. Sci. 165 (2019), pp. 13–22.
  • D. Nasri, On the eccentricity effects on the intraband optical transitions in two dimensional quantum rings with and without donor impurity, Physica B 540 (2018), pp. 51–57.
  • J.D. Castaño-Yepes, D.A. Amor-Quiroz, C.F. Ramirez-Gutierrez, and E.A. Gómez, Impact of a topological defect and Rashba spin-orbit interaction on the thermo-magnetic and optical properties of a 2D semiconductor quantum dot with Gaussian confinement, Physica E 109 (2019), pp. 59–66.
  • M.G. Barseghyan, A.A. Kirakosyan, and D. Laroze, Laser driven intraband optical transitions in two-dimensional quantum dots and quantum rings, Opt. Commun. 383 (2017), pp. 571–576.
  • M.G. Barseghyan, V.N. Mughnetsyan, L.M. Pérez, A.A. Kirakosyan, and D. Laroze, Effect of the impurity on the Aharonov-Bohm oscillations and the intraband absorption in GaAs/Ga1-xAlxAs quantum ring under intense THz laser field, Physica E 111 (2019), pp. 91–97.
  • Z.-H. Zhang, L. Zou, K.-X. Guo, and J.-H. Yuan, The nonlinear optical rectification in asymmetrical and symmetrical Gaussian potential quantum wells with applied electric field, Opt. Commun. 359 (2016), pp. 316–321.
  • M. Ciurla, J. Adamowski, B. Szafran, and S. Bednarek, Modelling of confinement potentials in quantum dots, Physica E 15 (2002), pp. 261–268.
  • M. Gavrila and J.Z. Kamiński, Free-free transitions in intense high-frequency laser fields, Phys. Rev. Lett. 52 (1984), pp. 613–616.
  • M. Pont, N.R. Walet, M. Gavrila, and C.W. McCurdy, Dichotomy of the hydrogen atom in superintense, high-frequency laser fields, Phys. Rev. Lett. 61 (1988), pp. 939–942.
  • F. Ehlotzky, Positronium decay in intense high frequency laser fields, Phys. Lett. A 126 (1988), pp. 524–527.
  • N. Radhakrishnan and A.J. Peter, Polaronic effects on laser dressed donor impurities in a quantum well, Physica E 41 (2009), pp. 1841–1847.
  • A. Keshavarz and M.J. Karimi, Linear and nonlinear intersubband optical absorption in symmetric double semi-parabolic quantum wells, Phys. Lett. A 374 (2010), pp. 2675–2680.
  • I. Karabulut, Ü. Atav, H. Şafak, and M. Tomak, Linear and nonlinear intersubband optical absorptions in an asymmetric rectangular quantum well, Eur. Phys. J. B 55 (2007), pp. 283–288.
  • J.A. Vinasco, A. Radu, E. Niculescu, M.E. Mora-Ramos, E. Feddi, V. Tulupenko, R.L. Restrepo, E. Kasapoglu, A.L. Morales, and C.A. Duque, Electronic states in GaAs-(Al,Ga)As eccentric quantum rings under nonresonant intense laser and magnetic fields, Sci. Rep.-UK 9 (pp17) (2019), pp. 1427.
  • J.A. Vinasco, A. Radu, R.L. Restrepo, A.L. Morales, M.E. Mora-Ramos, and C.A. Duque, Magnetic field effects on intraband transitions in elliptically polarized laser-dressed quantum rings, Opt. Mater. 91 (2019), pp. 309–320.
  • C.A. Duque, A.L. Morales, A. Montes, and N. Porras-Montenegro, Effects of applied electric fields on the infrared transitions between hydrogenic states in GaAs low-dimensional systems, Phys. Rev. B 55 (1997), pp. 10721–10728.
  • A. Montes, C.A. Duque, and N. Porras-Montenegro, The binding energies of shallow donor impurities in GaAs quantum-well wires under applied electric fields, J. Appl. Phys. 81 (1997), pp. 7890–7894.
  • C.A. Duque, A. Montes, A.L. Morales, and N. Porras-Montenegro, Effects of an applied electric field on the binding energy of shallow donor impurities in GaAs low-dimensional systems, J. Phys: Condens. Matter 9 (1997), pp. 5977–5987.
  • D. Siboh, P.K. Kalita, J.K. Sarma, and N.M. Nath, Determination of shift in energy of band edges and band gap of ZnSe spherical quantum dot, AIP. Conf. Proc. 1942 (pp4) (2018), pp. 050111.
  • V.V. Nikesh, A.D. Lad, S. Kimura, S. Nozaki, and S. Mahamuni, Electron energy levels in ZnSe quantum dots, J. Appl. Phys. 100 (pp6) (2006), pp. 113520.
  • M.A. Hines and P. Guyot-Sionnest, Bright UV-blue luminescent colloidal ZnSe nanocrystals, J. Phys. Chem. B 102 (1998), pp. 3655–3657.
  • S.S. Dhayal, L.M. Ramaniah, H.E. Ruda, and S.V. Nair, Electron states in semiconductor quantum dots, J. Chem. Phys. 141 (pp13) (2014), pp. 204702.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.