228
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A new constitutive relation for simulating plastic flow involving continuous-shear or shear-localisation during metal cutting

& ORCID Icon
Pages 486-511 | Received 27 Sep 2018, Accepted 31 Oct 2019, Published online: 20 Dec 2019

References

  • S. Jaspers and J.H. Dautzenberg, Material behaviour in metal cutting: strains, strain rates and temperatures in chip formation, J. Mater. Process. Technol. 121 (2002), pp. 123–135.
  • M.E. Merchant, Mechanics of the metal cutting process. I. orthogonal cutting and a Type 2 chip, J. Appl. Phys. 16 (1945), pp. 267–275.
  • H. Ernst and M.E. Merchant, Chip Formation, Friction, and High Quality Machined Surfaces, American Society for Testing Materials, Philadelphia, PA, pp. 1940, pp. 40–50.
  • M.E. Merchant, Basic mechanics of the metal-cutting process, J. Appl. Mech. 11 (1944), pp. A168–A175.
  • M.C. Shaw, Metal Cutting Principles, 2nd ed., Oxford University Press, Oxford, 2005.
  • E.H. Lee and B.W. Shaffer, Theory of plasticity applied to problem of machining, J. Appl. Mech. 19 (1952), pp. 234–239.
  • P.L.B. Oxley, Mechanics of Machining: An Analytical Approach to Assessing Machinability, Ellis Horwood Limited, Chichester, 1989.
  • N.N. Zorev, Inter-relationship between shear processes occuring along tool face and shear plane in metal cutting. Int. Res. Prod. Eng, Eng, ASME. (1963), pp. 42–49.
  • R. Komanduri and T.A. Schroeder, On shear instability in machining a nickel-iron base superalloy, J. Eng. Ind. 108(2) (1986), pp. 93–100.
  • D. Samantaray, S. Mandal, U. Borah, A.K. Bhaduri, and P.V. Sivaprasad, A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel, Mater. Sci. Eng: A. 526 (2009), pp. 1–6.
  • M.M. Gurusamy and B.C. Rao, On the performance of modified Zerilli-Armstrong constitutive model in simulating the metal-cutting process, J. Manuf. Process. 28 (2017), pp. 253–265.
  • Y.C. Lin and X.-M. Chen, A critical review of experimental results and constitutive descriptions for metals and alloys in hot working, Mater. Des. 32 (2011), pp. 1733–1759.
  • T.H. Courtney, Mechanical Behavior of Materials, Waveland Press, Long Grove, IL, 2005.
  • Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Materialia. 81 (2014), pp. 428–441.
  • U. Dixit, S. Joshi, and J. Davim, Incorporation of material behavior in modeling of metal forming and machining processes: A review, Mat. Des. 32(7) (2011), pp. 3655–3670.
  • B. Shi, Identification of the material constitutive equation for simulation of the metal cutting process, Ph.D. diss., McGill University, 2008.
  • A. Shrot and M. Bäker, Inverse identification of Johnson-Cook material parameters from machining simulations, Adv. Mater. Res. 223 (2011), pp. 277–285.
  • G.H. Majzoobi, F. Freshteh-Saniee, S.F.Z. Khosroshahi, and H.B. Mohammadloo, Determination of materials parameters under dynamic loading. Part I: Experiments and simulations, Comput. Mater. Sci. 49(2) (2010), pp. 192–200.
  • G.H. Majzoobi, S.F.Z. Khosroshahi, and H.B. Mohammadloo, Determination of materials parameters under dynamic loading: Part II: Optimization, Comput. Mater. Sci. 49(2) (2010), pp. 201–208.
  • M. Shatla, C. Kerk, and T. Altan, Process modeling in machining. Part I: Determination of flow stress data, Int. J. Mach. Tools. Manuf. 41 (2001), pp. 1511–1534.
  • T. Özel and T. Altan, Determination of workpiece flow stress and friction at the chip–tool contact for high-speed cutting, Int. J. Mach. Tools. Manuf. 40 (2000), pp. 133–152.
  • M. Bäker and A. Shrot, Inverse parameter identification with finite element simulations using knowledge-based descriptors, Comput. Mater. Sci. 69 (2013), pp. 128–136.
  • F. Klocke, D. Lung, and S. Buchkremer, Inverse identification of the constitutive equation of Inconel 718 and AISI 1045 from FE machining simulations, Procedia CIRP. 8 (2013), pp. 212–217.
  • R. Liu, S. Melkote, R. Pucha, J. Morehouse, X. Man, and T. Marusich, An enhanced constitutive material model for machining of Ti–6Al–4 V alloy, J. Mater. Process. Technol. 213(12) (2013), pp. 2238–2246.
  • J.B. Yang, W.T. Wu, and S. Srivatsa, Inverse flow stress calculation for machining processes, Adv. Mater. Res. 223 (2011), pp. 267–276.
  • B. Shi, H. Attia, and N. Tounsi, Identification of material constitutive laws for machining—part I: An analytical model describing the stress, strain, strain rate, and temperature fields in the primary shear zone in orthogonal metal cutting. ASME J. Manuf. Sci. Eng. 132 (2010), pp. 051008-1–051008-11.
  • A. Iturbe, E. Giraud, E. Hormaetxe, A. Garay, G. Germain, K. Ostolaza, and P.J. Arrazola, Mechanical characterization and modelling of Inconel 718 material behavior for machining process assessment, Mater. Sci. Eng: A. 682 (2017), pp. 441–453.
  • X. Wang, C. Huang, B. Zou, H. Liu, H. Zhu, and J. Wang, Dynamic behavior and a modified Johnson–Cook constitutive model of Inconel 718 at high strain rate and elevated temperature, Mater. Sci. Eng: A. 580 (2013), pp. 385–390.
  • J. Lorentzon, N. Järvstråt, and B.L. Josefson, Modelling chip formation of alloy 718, J. Mater. Process. Technol. 209(10) (2009), pp. 4645–4653.
  • A. Del Prete, L. Filice, and D. Umbrello, Numerical simulation of machining nickel-based alloys, Procedia CIRP. 8 (2013), pp. 540–545.
  • N. Ahmed, A.V. Mitrofanov, V.I. Babitsky, and V.V. Silberschmidt, Analysis of material response to ultrasonic vibration in turning Inconel 718, Mater. Sci. Eng: A. 424 (2006), pp. 318–325.
  • Y. Bai and B. Dodd, Adiabatic Shear Localisation: Occurrence, Theories and Applications, Pergamon Press, Oxford, 1992.
  • M.C. Shaw, S.O. Dirke, P.A. Smith, N.H. Cook, E.G. Loewen, and C.T. Yang, Machining Titanium, Report to U.S. Air Force, 1954.
  • R. Komanduri, J.A. Schroeder, J. Hazra, B.F. von Turkovich, and D.G. Flom, On the catastrophic shear instability in high speed machining of an AISI 1040 steel, ASME J. Eng. Ind. 104 (1982), pp. 121–131.
  • A. Vyas and M.C. Shaw, Mechanics of saw-tooth chip formation in metal cutting, J. Manuf. Sci. Eng. 121 (1999), pp. 163–172.
  • J. Hua and R. Shivpuri, Prediction of chip morphology and segmentation during the machining of titanium alloys, J. Mater. Process. Technol. 150 (2004), pp. 124–133.
  • R. Komanduri and R.H. Brown, On the mechanics of chip segmentation in machining, J. Eng. Ind. 103(1) (1981), pp. 33–51.
  • R. Komanduri, Some clarifications on the mechanics of chip formation when machining titanium alloys, Wear. 76(1) (1982), pp. 15–34.
  • D. Owen and M. Vaz, Computational techniques applied to high-speed machining under adiabatic strain localization conditions, Comput. Meth. Eng. 171 (1999), pp. 445–461.
  • M. Baker, J. Rosler, and C. Siemers, A finite element model of high speed metal cutting with adiabatic shearing, Comput. Struct. 80 (2002), pp. 495–513.
  • Y.C. Yen, A. Jain, and T. Altan, A finite element analysis of orthogonal machining using different tool edge geometries, J. Mater. Process. Technol. 146 (2004), pp. 72–81.
  • J.T. Carroll and J.S. Strenkowski, Finite element models of orthogonal cutting with application to single point diamond turning, Int. J. Mech. Sci. 30 (1988), pp. 899–920.
  • J. Liu, Y. Bai, and C. Xu, Evaluation of ductile fracture models in finite element simulation of metal cutting processes. J. Manuf. Sci. Eng. 136(1) (2014), pp. 011010-1–011010-14.
  • M. Barge, H. Hamdi, J. Rech, and J.M. Bergheau, Numerical modelling of orthogonal cutting: Influence of numerical parameters. J. Mater. Process. Technol. 164 (2005), pp. 164–165.
  • U. Domenico, Finite element simulation of conventional and high speed machining of Ti6al4v alloy, J. Mater. Process. Technol. 196(1-3) (2008), pp. 79–87.
  • E. Ceretti, T. Lucchi, and T. Altan, FEM simulation of orthogonal cutting: Serrated chip formation, J. Mater. Process. Technol. 95 (1999), pp. 17–26.
  • M.H. Dirikolu, T.H.C. Childs, and K. Maekawa, Finite element simulation of chip flow in metal machining, Int. J. Mech. Sci. 43 (2001), pp. 2699–2713.
  • Y. Guo, W. Li, and I. Jawahir, Surface integrity characterization and prediction in machining of hardened and difficult-to-machine alloys: A state-of-art research review and analysis, Mach. Sci. Tech. 13(4) (2009), pp. 437–470.
  • F. Jafarian, M.I. Ciaran, D. Umbrello, P. Arrazola, L. Filice, and H. Amirabadi, Finite element simulation of machining Inconel 718 alloy including microstructure changes, Int. J. Mech. Sci. 88 (2014), pp. 110–121.
  • E. Uhlmann, M. Graf von der Schulenburg, and R. Zettier, Finite element modeling and cutting simulation of Inconel 718, CIRP Ann. Manuf. Techn. 56(1) (2007), pp. 61–64.
  • Y. Xi, M. Bermingham, G. Wang, and M. Dargusch, Finite element modeling of cutting force and chip formation during thermally assisted machining of Ti6Al4 V alloy. J. Manuf. Sci. Eng. 135(6) (2013), pp. 061014-1–061014-9.
  • D. Sagapuram, K. Viswanathan, A. Mahato, N.K. Sundaram, R. M'Saoubi, K.P. Trumble, and S. Chandrasekar, Geometric flow control of shear bands by suppression of viscous sliding. Proc. Royal. Soc. A. Lond. 472 (2016), p. 20160167.
  • G.G. Ye, S.F. Xue, M.Q. Jiang, X.H. Tong, and L.H. Dai, Modeling periodic adiabatic shear band evolution during high speed machining Ti-6Al-4V alloy, Int. J. Plast. 40 (2013), pp. 39–55.
  • X.P. Zhang, R. Shivpuri, and A.K. Srivastava, A new microstructure-sensitive flow stress model for the high-speed machining of titanium alloy Ti–6Al–4 V. J. Manuf. Sci. Eng. 139(5) (2017), pp. 051006-1–051006-17.
  • A. Atkins, Modelling metal cutting using modern ductile fracture mechanics: Quantitative explanations for some longstanding problems, Int. J. Mech. Sci. 45 (2003), pp. 373–396.
  • Abaqus 6.12 analysis user’s manual, vol. II. Providence, RI, US: Analysis Abaqus Dassault Systemes Simulia Corp.; 2012.
  • L. Filice, F. Micari, S. Rizzuti, and D. Umbrello, A critical analysis on the friction modelling in orthogonal machining, Int. J. Mach. Tools. Manuf. 47 (2007), pp. 709–714.
  • S. Jing and C.R. Liu, On predicting chip morphology and phase transformation in hard machining, Int. J. Adv. Manuf. Technol. 27(7–8) (2006), pp. 645–654.
  • A. Molinari, X. Soldani, and M.H. Miguélez, Adiabatic shear banding and scaling laws in chip formation with application to cutting of Ti–6Al–4 V, J. Mech. Phy. Solids. 61(11) (2013), pp. 2331–2359.
  • P. Sartkulvanich, T. Altan, and A. Göcmen, Effects of flow stress and friction models in finite element simulation of orthogonal cutting – a sensitivity analysis, Mach. Sci. Technol. 9 (2005), pp. 1–26.
  • B.A. Gama, S.L. Lopatnikov, and J.W. Gillespie, Hopkinson Bar experimental technique: A critical review, Appl Mech Rev. 57(4) (2004), pp. 223–249.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.