157
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Hexa ↔ tetra silicene crystal–crystal phase transition

, ORCID Icon &
Pages 551-570 | Received 26 May 2019, Accepted 09 Nov 2019, Published online: 03 Dec 2019

References

  • K. Takeda and K. Shiraishi, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B 50 (1994), pp. 14916–14922. doi: 10.1103/PhysRevB.50.14916
  • S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin and S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett 102 (2009), pp. 236804. doi: 10.1103/PhysRevLett.102.236804
  • E. Durgun, S. Tongay and S. Ciraci, Silicon and III-V compound nanotubes: Structural and electronic properties. Phys. Rev. B 72 (2005), pp. 075420. doi: 10.1103/PhysRevB.72.075420
  • G.G. Guzmán-Verri and L.C. Lew Yan Voon, Electronic structure of silicon-based nanostructures. Phys. Rev. B 76 (2007), pp. 075131. doi: 10.1103/PhysRevB.76.075131
  • L. Chen, C.-C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. Yao and K. Wu, Evidence for Dirac Fermions in a honeycomb lattice based on silicon. Phys. Rev. Lett 109 (2012), pp. 056804. doi: 10.1103/PhysRevLett.109.056804
  • H. Nakano, M. Ishii and H. Nakamura, Preparation and structure of novel siloxene nanosheets. Chem. Commun. 23 (2005), pp. 2945. doi: 10.1039/b500758e
  • H. Nakano, T. Mitsuoka, M. Harada, K. Horibuchi, H. Nozaki, N. Takahashi, T. Nonaka, Y. Seno, H. Nakamura, Soft synthesis of single-crystal silicon monolayer sheets. Angew Chem. Int. Ed. 118 (2006), pp. 6451. doi: 10.1002/ange.200600321
  • H. Okamoto, Y. Kumai, Y. Sugiyama, T. Mitsuoka, K. Nakanishi, T. Ohta, H. Nozaki, S. Yamaguchi, S. Shirai and H. Nakano, Silicon nanosheets and their self-assembled regular stacking structure. J. Am. Chem. Soc. 132 (2010), pp. 2710–2718. doi: 10.1021/ja908827z
  • Y. Sugiyama, H. Okamoto, T. Mitsuoka, T. Morikawa, K. Nakanishi, T. Ohta and H. Nakano, Synthesis and optical properties of monolayer organosilicon nanosheets. J. Am. Chem. Soc 132 (2010), pp. 5946–5947. doi: 10.1021/ja100919d
  • P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet and G. Le Lay, Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett 108 (2012), pp. 155501. doi: 10.1103/PhysRevLett.108.155501
  • B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen and K. Wu, Evidence of silicene in honeycomb structures of silicon on Ag (111). Nano Lett. 12 (2012), pp. 3507–3511. doi: 10.1021/nl301047g
  • C. Zhang and S. Yan, First-principles study of ferromagnetism in two-dimensional silicene with hydrogenation. J. Phys. Chem. C 116 (2012), pp. 4163–4166. doi: 10.1021/jp2104177
  • H. Jamgotchian, Y. Colignon, N. Hamzaoui, B. Ealet, J.Y. Hoarau, B. Aufray and J.P. Bibérian, Growth of silicene layers on Ag (111): Unexpected effect of the substrate temperature. J. Phys. Condens. Matter 24 (2012), pp. 172001. doi: 10.1088/0953-8984/24/17/172001
  • C.L. Lin, R. Arafune, K. Kawahara, N. Tsukahara, E. Minamitani, Y. Kim, N. Takagi and M. Kawai, Structure of silicene grown on Ag (111). Appl. Phys. Express 5 (2012), pp. 045802. doi: 10.1143/APEX.5.045802
  • Z. Guo, S. Furuya, J. Iwata and A. Oshiyama, Structure of silicene grown on Ag (111). Phys. Rev. B 87 (2013), pp. 235435. doi: 10.1103/PhysRevB.87.235435
  • C.C. Liu, W. Feng and Y. Yao, Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett 107 (2011), pp. 076802. doi: 10.1103/PhysRevLett.107.076802
  • H. Pan, Z. Li, C.-C. Liu, G. Zhu, Z. Qiao and Y. Yao, Valley-polarized quantum anomalous Hall effect in silicene. Phys. Rev. Lett 112 (2014), pp. 106802. doi: 10.1103/PhysRevLett.112.106802
  • M. Ezawa, Spin valleytronics in silicene: Quantum spin Hall–quantum anomalous Hall insulators and single-valley semimetals. Phys. Rev. B 87 (2013), pp. 155415. doi: 10.1103/PhysRevB.87.155415
  • Y. Wang, J. Zheng, Z. Ni, R. Fei, Q. Liu, R. Quhe, C. Xu, J. Zhou, Z. Gao and J. Lu, Half-metallic silicene and Germanene nanoribbons: Towards high-performance spintronics device. NANO 7 (2012), pp. 1250037. doi: 10.1142/S1793292012500373
  • L.D. Zhang, F. Yang and Y. Yao, Possible electric-field-induced superconducting states in doped silicene. Sci. Rep 5 (2015), pp. 8203. doi: 10.1038/srep08203
  • F. Liu, C.-C. Liu, K. Wu, F. Yang and Y. Yao, D + id′ Chiral superconductivity in bilayer silicene. Phys. Rev. Lett 111 (2013), pp. 066804. doi: 10.1103/PhysRevLett.111.066804
  • E. Zaminpayma and P. Nayebi, Band gap engineering in silicene: A theoretical study of density functional tight-binding theory. Physica E 84 (2016), pp. 555–563. doi: 10.1016/j.physe.2016.06.016
  • N.D. Drummond, V. Zólyomi and V.I. Fal’ko, Electrically tunable band gap in silicene. Phys Rev B 85 (2012), pp. 075423. doi: 10.1103/PhysRevB.85.075423
  • L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle and D. Akinwande, Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10 (2015), pp. 227–231. doi: 10.1038/nnano.2014.325
  • A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.C. Zhang and D. Akinwande, Buckled two-dimensional Xene sheets. Nat Mater. 16 (2017), pp. 163–169. doi: 10.1038/nmat4802
  • K. Yang, S. Cahangirov, A. Cantarero, A. Rubio and R. D’Agosta, Thermoelectric properties of atomically thin silicene and Germanene nanostructures. Phys. Rev. B 89 (2014), pp. 125403. doi: 10.1103/PhysRevB.89.125403
  • J.W. Feng, Y.J. Liu, H.X. Wang, J.X. Zhao, Q.H. Cai and X.Z. Wang, Gas adsorption on silicene: A theoretical study. Comp. Mater. Sci 87 (2014), pp. 218. doi: 10.1016/j.commatsci.2014.02.025
  • G.A. Tritsaris, E. Kaxiras, S. Meng and E. Wang, Adsorption and diffusion of lithium on layered silicon for Li-ion storage. Nano Lett. 13 (2013), pp. 2258–2263. doi: 10.1021/nl400830u
  • X. Zhang, H. Xie, M. Hu, H. Bao, S. Yue, G. Qing and G. Su, Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential. Phys. Rev. 89 (2014), pp. 054310. doi: 10.1103/PhysRevB.89.054310
  • T. Morishita, S.P. Russo, I.K. Snook, M.J.S. Spencer, K. Nishio and M. Mikami, First-principles study of structural and electronic properties of ultrathin silicon nanosheets. Phys. Rev. B 82 (2010), pp. 045419. doi: 10.1103/PhysRevB.82.045419
  • J. Bai, H. Tanaka and X.C. Zeng, Graphene-like bilayer hexagonal silicon polymorph. Nano Res. 3 (2010), pp. 694–700. doi: 10.1007/s12274-010-0032-6
  • J.C. Johnston, S. Phippen and V. Molinero, A single-component silicon quasicrystal. Phys. Chem. Lett. 2 (2011), pp. 384–388. doi: 10.1021/jz101706k
  • T. Morishita, M.J.S. Spencer, S.P. Russo, I.K. Snook and M. Mikami, Surface reconstruction of ultrathin silicon nanosheets. Chem. Phys. Lett. 506 (2011), pp. 221–225. doi: 10.1016/j.cplett.2011.03.004
  • T. Morishita, M.J.S. Spencer, S. Kawamoto and I.K. Snook, A new surface and structure for silicene: Polygonal silicene formation on the Al(111) surface. J. Phys. Chem. C 117 (2013), pp. 22142–22148. doi: 10.1021/jp4080898
  • J.I. Cerda, J. Slawinska, G. Le Lay, A.C. Mrele, G.M. Gomez-Rodriguez and M.E. Davila, Unveiling the pentagonal nature of perfectly aligned single-and double-strand Si nano-ribbons on Ag (110). Nat Commun. 7 (2016), pp. 13076. doi: 10.1038/ncomms13076
  • Y. Aierken, O. Leenaerts and F.M. Peeters, A first-principles study of stable few-layer penta-silicene. Phys. Chem. Chem. Phys. 18 (2016), pp. 18486–18492. doi: 10.1039/C6CP03200A
  • Y. Ding and Y. Wang, Hydrogen-induced stabilization and tunable electronic structures of penta-silicene: A computational study. J. Mater. Chem. C 3 (2015), pp. 11341–11348. doi: 10.1039/C5TC02504D
  • M. Qiao, Y. Wang, Y. Li and Z. Chen, Tetra-silicene: A semiconducting allotrope of silicene with negative Poisson's Ratios. J. Phys. Chem. C 121 (2017), pp. 9627–9633. doi: 10.1021/acs.jpcc.7b02413
  • E. Chatzikyriakou, P. Karafiloglou and J. Kioseoglou, Ab initio quantum transport in AB-stacked bilayer penta-silicene using atomic orbitals. RSC Adv. 8 (2018), pp. 34041–34046. doi: 10.1039/C8RA05652H
  • D. Wu, S. Wang, S. Zhang, Y. Liu, Y. Ding, B. Yang and H. Chen, Stabilization of two-dimensional penta-silicene for flexible lithium-ion battery anodes via surface chemistry reconfiguration. Phys. Chem. Chem. Phys 21 (2019), pp. 1029–1037. doi: 10.1039/C8CP05008B
  • H.A. Huy, N.T. Long, N.L.T. Duong, T.Q. Tuan, O.K. Le, V.V. Hoang and N.H. Giang, Novel pressure-induced topological phase transitions of supercooled liquid and amorphous silicene. J. Phys.: Condens. Matter 31 (2019), pp. 095403.
  • V.V. Hoang, N.H. Giang, T.Q. Dong and T.T. Thu Hanh, Confined tetra-silicene obtained by cooling from the melt. Comp. Mater. Sci 158 (2019), pp. 406. doi: 10.1016/j.commatsci.2018.11.034
  • F.H. Stillinger and T.A. Weber, Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31 (1985), pp. 5262–5271. doi: 10.1103/PhysRevB.31.5262
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys 117 (1995), pp. 1–19. doi: 10.1006/jcph.1995.1039
  • S. Le Roux and V. Petkov, ISAACS–interactive structure analysis of amorphous and crystalline systems. J. Appl. Cryst. 43 (2010), pp. 181–185. doi: 10.1107/S0021889809051929
  • W. Humphrey, A. Dalke and K. Schulten, VMD: Visual molecular dynamics. J. Mol. Graphics 14 (1996), pp. 33–38. doi: 10.1016/0263-7855(96)00018-5
  • Y. Peng, F. Wang, Z. Wang, A.M. Alsayed, Z. Zhang, A.G. Yodh and Y. Han, Two-step nucleation mechanism in solid–solid phase transitions. Nat. Mater. 14 (2015), pp. 101–108. doi: 10.1038/nmat4083
  • W. Qi, Y. Peng, Y. Han, R.K. Bowles and M. Dijkstra, Nonclassical nucleation in a solid-solid transition of confined hard spheres. Phys. Rev. Lett. 115 (2015), pp. 185701. doi: 10.1103/PhysRevLett.115.185701
  • V.V. Hoang and T. Odagaki, Glass formation and thermodynamics of supercooled monatomic liquids. J. Phys. Chem. B 115 (2011), pp. 6946–6956. doi: 10.1021/jp111086e
  • A. Kara, H. Enriquez, S. Vizzini, H. Oughaddou, L.c. Lew Yan Voon and B. Aufray, A review on silicene – new candidate for electronics. Sur. Sci. Rep. 67 (2012), pp. 141. doi: 10.1016/j.surfrep.2012.01.001
  • M. Houssa, A. Dimoulas and A. Molle, Silicene: A review of recent experimental and theoretical investigations. J. Phys.: Condens. Matter 27 (2015), pp. 253002.
  • S. Chowdhury and D. Jana, A theoretical review on electronic, magnetic and optical properties of silicene. Rep. Prog. Phys. 79 (2016), pp. 126501. doi: 10.1088/0034-4885/79/12/126501
  • V.V. Hoang and H.T. Cam Mi, Free-standing silicene obtained by cooling from 2D liquid Si: Structure and thermodynamic properties. J. Phys. D: Appl. Phys 47 (2014), pp. 495303. doi: 10.1088/0022-3727/47/49/495303
  • K.J. Strandburg, Two-dimensional melting. Rev. Mod. Phys. 60 (1988), pp. 161–207. doi: 10.1103/RevModPhys.60.161
  • Z. Wang, A.M. Alsayed, A.G. Yodh and Y. Han, Two-dimensional freezing criteria for crystallizing colloidal monolayers. J. Chem. Phys 132 (2010), pp. 154501. doi: 10.1063/1.3372618
  • J.Q. Broughton and X.P. Li, Phase diagram of silicon by molecular dynamics. Phys. Rev. B 35 (1987), pp. 9120–9127. doi: 10.1103/PhysRevB.35.9120

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.