482
Views
25
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Dislocation drag from phonon wind in an isotropic crystal at large velocities

ORCID Icon, ORCID Icon &
Pages 571-600 | Received 19 Jul 2019, Accepted 10 Nov 2019, Published online: 25 Dec 2019

References

  • A. Hunter and D.L. Preston, Analytic model of the remobilization of pinned glide dislocations from quasi-static to high strain rates, Int. J. Plast. 70 (2015), pp. 1–29. doi: 10.1016/j.ijplas.2015.01.008
  • E.M. Nadgornyi, Dislocation dynamics and mechanical properties of crystals, Prog. Mater. Sci. 31 (1988), pp. 1–530. doi: 10.1016/0079-6425(88)90005-9
  • V.I. Alshits. The phonon-dislocation interaction and its role in dislocation dragging and thermal resistivity, in Elastic Strain Fields and Dislocation Mobility, V.L. Indenbom and J. Lothe, eds., Modern Problems in Condensed Matter Sciences Vol. 31, Elsevier, New York, 1992, pp. 625–697.
  • J. Lothe, Aspects of the theories of dislocation mobility and internal friction, Phys. Rev. 117 (1960), pp. 704–708. doi: 10.1103/PhysRev.117.704
  • J. Lothe, Theory of dislocation mobility in pure slip, J. Appl. Phys. 33 (1962), pp. 2116–2125. doi: 10.1063/1.1728907
  • D.N. Blaschke, E. Mottola, and D.L. Preston, On the velocity dependence of the dislocation drag coefficient from phonon wind, Tech. Rep. LA-UR-16-24559, Los Alamos Natl. Lab., 2018. Available at www.osti.gov/biblio/1434423/.
  • P. Rosakis, Supersonic dislocation kinetics from an augmented Peierls model, Phys. Rev. Lett. 86 (2001), pp. 95–98. doi: 10.1103/PhysRevLett.86.95
  • J. Marian and A. Caro, Moving dislocations in disordered alloys: Connecting continuum and discrete models with atomistic simulations, Phys. Rev. B74 (2006), p. 024113.
  • Y.P. Pellegrini, Dynamic Peierls-Nabarro equations for elastically isotropic crystals, Phys. Rev. B81 (2010), p. 024101.
  • C.J. Ruestes, E.M. Bringa, R.E. Rudd, B.A. Remington, T.P. Remington, and M.A. Meyers, Probing the character of ultra-fast dislocations, Sci. Rep. 5 (2015), p. 16892. doi: 10.1038/srep16892
  • E. Oren, E. Yahel, and G. Makov, Dislocation kinematics: a molecular dynamics study in Cu, Model. Simul. Mater. Sci. Eng. 25 (2017), p. 025002. doi: 10.1088/1361-651X/aa52a7
  • V. Nosenko, S. Zhdanov, and G. Morfill, Supersonic dislocations observed in a plasma crystal, Phys. Rev. Lett. 99 (2007), p. 025002. doi: 10.1103/PhysRevLett.99.025002
  • D.N. Blaschke and B.A. Szajewski, Line tension of a dislocation moving through an anisotropic crystal, Philos. Mag. 98 (2018), pp. 2397–2424. doi: 10.1080/14786435.2018.1489152
  • D.N. Blaschke, Velocity dependent dislocation drag from phonon wind and crystal geometry, J. Phys. Chem. Solids 124 (2019), pp. 24–35. doi: 10.1016/j.jpcs.2018.08.032
  • D.N. Blaschke, Properties of dislocation drag from phonon wind at ambient conditions, Materials 12 (2019), p. 948. doi: 10.3390/ma12060948
  • V.S. Krasnikov, A.Yu. Kuksin, A.E. Mayer, and A.V. Yanilkin, Plastic deformation under high-rate loading: The multiscale approach, Phys. Solid State 52 (2010), pp. 1386–1396. doi: 10.1134/S1063783410070115
  • N.R. Barton, J.V. Bernier, R. Becker, A. Arsenlis, R. Cavallo, J. Marian, M. Rhee, H.S. Park, B.A. Remington, and R.T. Olson, A multiscale strength model for extreme loading conditions, J. Appl. Phys. 109 (2011), p. 073501. doi: 10.1063/1.3553718
  • R.A. Austin, Elastic precursor wave decay in shock-compressed aluminum over a wide range of temperature, J. Appl. Phys. 123 (2018), p. 035103. doi: 10.1063/1.5008280
  • D.C. Wallace, Thermodynamics of Crystals, J. Wiley & Sons Inc., New York, 1972.
  • J.D. Eshelby, Uniformly moving dislocations, Proc. Phys. Soc. A62 (1949), p. 307. doi: 10.1088/0370-1298/62/5/307
  • J. Weertman and J.R. Weertman, Moving dislocations, in Moving Dislocations, F.R.N. Nabarro, ed., Dislocations in Solids Vol. 3, North Holland Pub. Co., Amsterdam, 1980, pp. 1–59.
  • L. Landau and E. Lifshitz. Theory of Elasticity, 3rd ed., Course of Theoretical Physics Vol. 7, Butterworth-Heinemann, Boston, 1986.
  • A.M. Kosevich, The Crystal Lattice: Phonons, Solitons, Dislocations, Superlattices. 2nd ed.Wiley-VCH, Weinheim, 2005.
  • C. Teodosiu, Elastic Models of Crystal Defects, Springer-Verlag, New York, 1982.
  • J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed., Wiley, New York, 1982.
  • F.D. Murnaghan, Finite deformations of an elastic solid, Am. J. Math 59 (1937), pp. 235–260. doi: 10.2307/2371405
  • F.D. Murnaghan, Finite Deformations of An Elastic Solid, Wiley, New York, 1951.
  • R.A. Toupin and B. Bernstein, Sound waves in deformed perfectly elastic materials. Acoustoelastic effect, J. Acoust. Soc. Am. 33 (1961), pp. 216–225. doi: 10.1121/1.1908623
  • A.D. Volkov, A.I. Kokshaiskii, A.I. Korobov, and V.M. Prokhorov, Second- and third-order elastic coefficients in polycrystalline aluminum alloy AMg6, Acoust. Phys. 61 (2015), pp. 651–656. doi: 10.1134/S1063771015060147
  • J. Lubliner. Plasticity Theory, Dover ed., Dover Books on Engineering, Dover, New York, 2008.
  • D.C. Wallace, Thermoelastic theory of stressed crystals and higher-order elastic constants, Solid State Physics Vol. 25, Academic Press, New York, 1970, pp. 301–404.
  • V.A. Lubarda, New estimates of the third-order elastic constants for isotropic aggregates of cubic crystals, J. Mech. Phys. Solids 45 (1997), pp. 471–490. doi: 10.1016/S0022-5096(96)00113-5
  • D.N. Blaschke, Averaging of elastic constants for polycrystals, J. Appl. Phys. 122 (2017), p. 145110. doi: 10.1063/1.4993443
  • J.M. Burgers, Some considerations on the fields of stress connected with dislocations in a regular crystal lattice. I, Proc. Kon. Ned. Akad. v. Wet. 42 (1939), pp. 293–325. Available at http://www.dwc.knaw.nl/DL/publications/PU00017316.pdf.
  • J. Weertman, High velocity dislocations, in Response of Metals to High Velocity Deformation, P.G. Shewmon and V.F. Zackay, eds., Metallurgical Society Conferences Vol. 9, Interscience Publishers, New York, 1961, pp. 205–247, Proc. of a technical conference, Estes Park, Colorado, 1960.
  • V.I. Al'shits, M.D. Mitlianskij, and R.K. Kotowski, The phonon wind as a non-linear mechanism of dislocation dragging, Arch. Mech. 31 (1979), pp. 91–105.
  • V.I. Al'shits, Raman scattering of phonons as a cause of dislocation damping, Sov. Phys. Solid State11 (1969), pp. 1081–1087. [Fiz. Tverd. Tela 11 (1969), pp. 1336–1344].
  • V.I. Al'shits, ‘Phonon wind’ and dislocation damping, Sov. Phys. Solid State 11 (1970), pp. 1947–1948. [Fiz. Tverd. Tela 11 (1969), pp. 2405–2407].
  • V.I. Al'shitz and A.G. Mal'shukov, Phonon component of dynamic dragging of dislocations, Sov. Phys. JETP 36 (1973), pp. 978–982. [Zh. Eksp. Teor. Fiz. 63 (1972), pp. 1849–1857]. Available at http://www.jetp.ac.ru/cgi-bin/dn/e_036_05_0978.pdf.
  • A.D. Brailsford, Anharmonicity contributions to dislocation drag, J. Appl. Phys. 43 (1972), pp. 1380–1393. doi: 10.1063/1.1661329
  • A. Seeger and O. Buck, Die experimentelle Ermittlung der elastischen Konstanten höherer Ordnung, Z. Naturf. 15a (1960), pp. 1056–1067. Available at http://zfn.mpdl.mpg.de/data/Reihe_A/15/ZNA-1960-15a-1056.pdf.
  • W. Wasserbäch, Third-order constants of a cubic quasi-isotropic solid, Phys. Stat. Sol. (b) 159 (1990), pp. 689–697. doi: 10.1002/pssb.2221590216
  • W.M. Haynes, CRC Handbook of Chemistry and Physics, 97th ed., CRC Press, 2017. Available at http://hbcponline.com.
  • R.W. Hertzberg, R.P. Vinci, and J.L. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials. 5th ed.Wiley, New York, 2012.
  • L.J. Graham, H. Nadler, and R. Chang, Third-order elastic constants of single-crystal and polycrystalline columbium, J. Appl. Phys. 39 (1968), pp. 3025–3033. doi: 10.1063/1.1656726
  • F.C. Frank, Dislocation theory, Nuov. Cim. 7 (1958), pp. 386–413. doi: 10.1007/BF02751488
  • J. Cotner and J. Weertman, High dislocation velocities and the structures of slip bands in shock loaded high purity lithium fluoride, Discuss. Faraday Soc. 38 (1964), pp. 225–232. doi: 10.1039/df9643800225
  • E.V. Darinskaya, I.P. Makarevich, Yu.I. Meshcheryakov, V.A. Morozov, and A.A. Urusovskaya, Investigation of the mobility of edge dislocations in LiF and NaCl crystals subjected to pulse loading with an electron beam, Sov. Phys. Solid State 24 (1982), p. 898. [Fiz. Tverd. Tela 24 (1982), p. 1564].
  • J.A. Gorman, D.S. Wood, and T. Vreeland Jr., Mobility of dislocations in aluminum, J. Appl. Phys.40 (1969), pp. 833–841. doi: 10.1063/1.1657472
  • V.R. Parameswaran, N. Urabe, and J. Weertman, Dislocation mobility in aluminum, J. Appl. Phys.43 (1972), pp. 2982–2986. doi: 10.1063/1.1661644
  • D.L. Olmsted, L.G. Hector Jr., W.A. Curtin, and R.J. Clifton, Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys, Model. Simul. Mater. Sci. Eng. 13 (2005), p. 371. doi: 10.1088/0965-0393/13/3/007
  • T. Suzuki, A. Ikushima, and M. Aoki, Acoustic attenuation studies of the frictional force on a fast moving dislocation, Acta Metall. 12 (1964), pp. 1231–1240. doi: 10.1016/0001-6160(64)90107-5
  • K.M. Jassby and T. Vreeland Jr., Dislocation mobility in pure copper at 4.2∘K, Phys. Rev. B8 (1973), pp. 3537–3541. doi: 10.1103/PhysRevB.8.3537
  • E.B. Zaretsky and G.I. Kanel, Response of copper to shock-wave loading at temperatures up to the melting point, J. Appl. Phys. 114 (2013), p. 083511.
  • R.M. Stern and A.V. Granato, Overdamped resonance of dislocations in copper, Acta Metall. 10 (1962), pp. 358–381. doi: 10.1016/0001-6160(62)90014-7
  • W.F. Greenman, T. Vreeland Jr., and D.S. Wood, Dislocation mobility in copper, J. Appl. Phys. 38 (1967), pp. 3595–3603. doi: 10.1063/1.1710178
  • G.A. Alers and D.O. Thompson, Dislocation contributions to the modulus and damping in copper at megacycle frequencies, J. Appl. Phys. 32 (1961), pp. 283–293. doi: 10.1063/1.1735992
  • N. Urabe and J. Weertman, Dislocation mobility in potassium and iron single crystals, Mater. Sci. Eng. 18 (1975), pp. 41–49. doi: 10.1016/0025-5416(75)90071-3
  • M.R. Gilbert, S. Queyreau, and J. Marian, Stress and temperature dependence of screw dislocation mobility in α-Fe by molecular dynamics, Phys. Rev. B84 (2011), p. 174103.
  • X. Markenscoff and S. Huang, Analysis for a screw dislocation accelerating through the shear-wave speed barrier, J. Mech. Phys. Solids 56 (2008), pp. 2225–2239. doi: 10.1016/j.jmps.2008.01.005
  • X. Markenscoff and S. Huang, The energetics of dislocations accelerating and decelerating through the shear-wave speed barrier, Appl. Phys. Lett. 94 (2009), p. 021906. doi: 10.1063/1.3072351
  • S. Huang and X. Markenscoff, Is intersonic dislocation motion possible? Singularity analysis for an edge dislocation accelerating through the shear wave speed barrier, Exp. Mech. 49 (2009), pp. 219–224. doi: 10.1007/s11340-008-9122-8
  • R.J. Clifton, On the analysis of elastic/visco-plastic waves of finite uniaxial strain, in Shock Waves and the Mechanical Properties of Solids, J.J. Burke and V. Weiss, eds., Sagamore Army Materials Research Conference Proceedings Vol. 17, Syracuse University Press, Syracuse, NY, 1971, pp. 73–116.
  • D.J. Luscher, J.R. Mayeur, H.M. Mourad, A. Hunter, and M.A. Kenamond, Coupling continuum dislocation transport with crystal plasticity for application to shock loading conditions, Int. J. Plast.76 (2016), pp. 111–129. doi: 10.1016/j.ijplas.2015.07.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.