167
Views
1
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Effect of Pr-filling in binary skutterudites CoX3 (P, As and Sb) on structural, electronic, elastic and transport properties

, &
Pages 728-748 | Received 03 Aug 2019, Accepted 18 Nov 2019, Published online: 03 Dec 2019

References

  • R. Guo, X. Wang and B. Huang, Thermal conductivity of skutterudite CoSb3 from first principles: Substitution and nanoengineering effects. Sci. Rep. 5 (2015), pp. 7806-1–7806-9.
  • G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial and T. Caillat, Recent developments in thermoelectric materials. Int. Mater. Rev. 48 (2003), pp. 45–66. doi: 10.1179/095066003225010182
  • C. Uher, Skutterudites: Prospective novel thermoelectrics. Semicond. Semimet. 69 (2001), pp. 139–253. doi: 10.1016/S0080-8784(01)80151-4
  • S. Riffat and X. Ma, Thermoelectrics: a review of present and potential applications. Appl. Therm. Eng. 23 (2003), pp. 913–935. doi: 10.1016/S1359-4311(03)00012-7
  • O.M. Løvvik and Ø Prytz, Density-functional band-structure calculations for La-, Y- and Sc-filled CoP3 based skutterudite structures. Phys. Rev. B 70 (2004), pp. 195119-1–195119-6. doi: 10.1103/PhysRevB.70.195119
  • M. Fornari and D.J. Singh, Electronic structure and thermoelectric properties of phosphide skutterudite. Phys. Rev. B 59 (1999), pp. 9722–9724. doi: 10.1103/PhysRevB.59.9722
  • A. Watcharapasorn, R.C. DeMattei and R.S. Feigelson, Thermoelectric properties of some Cobalt Phosphide-Arsenide compounds. J. Mat. Res. Soc 626 (2000), pp. Z1.4.1–Z1.4.6. doi: 10.1557/PROC-626-Z14.1
  • D.J. Singh and W.E. Pickett, Skutterudite antimonides: quasi-linear bands and novel transport. Phys. Rev. B 50 (1994), pp. 11235-1–11235-4.
  • J.O. Sofo and G.D. Mahan, Electronic structure of CoSb3: a narrow gap semiconductor. Phys. Rev. B 58 (1998), pp. 15620–15623. doi: 10.1103/PhysRevB.58.15620
  • K. Koga, K. Akai, K. Oshiro and M. Matsuura, Electronic structure and optical properties of binary skutterudite antimonides. Phys. Rev. B 71 (2005), pp. 155119–155121. doi: 10.1103/PhysRevB.71.155119
  • S. Sharma and S.K. Pandey, A first principle study of electronic band structures and effective mass tensors of thermoelectric materials: PbTe, Mg2Si, FeGa3 and CoSb3. Comput. Mater. Sci. 85 (2014), pp. 340–346. doi: 10.1016/j.commatsci.2014.01.011
  • M.B. Maple, P.C. Ho, V.S. Zapf, N.A. Frederick, E.D. Bauer, W.M. Yuhasz, F.M. Woodward and J.W. Lynn, Investigation of ferromagnetic filled skutterudite compounds EuT4Sb12 (T=Fe, Ru, Os). J. Phys. Soc. Jpn. 71 (2002), pp. 23–28. doi: 10.1143/JPSJS.71S.23
  • E.D. Bauer, N.A. Frederick, P.C. Ho, V.S. Zapf and M.B. Maple, Superconductivity and heavy fermions behavior in PrOs4Sb12. Phys. Rev. B 65 (2002), pp. 100506–100514. doi: 10.1103/PhysRevB.65.100506
  • M.S. Torikachvili, J.W. Chen, Y. Dalichaouch, R.P. Guertin, M.W. McElfresh, C. Rossel, M.B. Maple, and G.P. Meisner, Low-temperature properties of rare-earth and actinide iron phosphide compounds MFe4P12 (M=La, Pr, Nd, and Th). Phys. Rev. B 36 (1987), pp. 8660–8664. doi: 10.1103/PhysRevB.36.8660
  • H. Sato, Y. Abe, H. Okada, T.D. Matsuda, H. Sugawara and Y. Aoki, Anomalous transport properties of RFe4P12 (R=La, Ce, Pr, and Nd). Phys. Rev. B 62 (2000), pp. 15125–15130. doi: 10.1103/PhysRevB.62.15125
  • H. Sato, Y. Abe, H. Okada, T.D. Matsuda, H. Sugawara and Y. Aoki, Unusual behaviors in ReFe4P12 (Re=La, Pr and Nd). Physica B 281-282 (2000), pp. 306–307. doi: 10.1016/S0921-4526(99)01001-7
  • T.D. Matsuda, H. Okada, H. Sugawara, Y. Aoki, H. Sato, A.V. Andreev, Y. Shiolkawa, V. Sechovsky, T. Honma, E. Yamamoto and Y. Õuki, Specific-heat anomaly of metamagnetism on PrFe4P12 and UCoAl. Physica B 281-282 (2000), pp. 220–222. doi: 10.1016/S0921-4526(99)01003-0
  • Y. Nakanishi, T. Simizu, M. Yoshizawa, T.D. Matsuda, H. Sugawara and H. Sato, Elastic constants of PrFe4P12 in magnetic fields. Phys. Rev. B 63 (2001), pp. 184429–184434. doi: 10.1103/PhysRevB.63.184429
  • H. Hidaka, I. Ando, H. Kotegawa, T.C. Kobayashi, H. Harima, M. Kobayashi, H. Sugawara and H. Sato, Pressure-induced metal-insulator transition in the filled skutterudite PrFe4P12. Phys. Rev. B 71 (2005), pp. 073102–073105. doi: 10.1103/PhysRevB.71.073102
  • C. Sekine, T. Uchiumi, I. Shirotani, K. Matsuhira, T. Sakakibara, T. Goto and T. Yagi, Magnetic properties of the filled skutterudites-type structure compounds GdRu4P12 and TbRu4P12 synthesized under high pressure. Phys. Rev. B 62 (2000), pp. 11581–11584. doi: 10.1103/PhysRevB.62.11581
  • K. Nouneh, A.H. Reshak, S. Auluck, I.V. Kityk, R. Viennois, S. Benet and S. Charar, Band energy and thermoelectricity of filled skutterudites LaFe4Sb12 and CeFe4Sb12. J. Alloys Compd. 437 (2007), pp. 39–46. doi: 10.1016/j.jallcom.2006.07.114
  • A. Shankar, D.P. Rai, Sandeep and R.K. Thapa, Ground state properties of filled skutterudite EuRu4P12: A first principles study. J. Alloys Compd. 578 (2013), pp. 559–564. doi: 10.1016/j.jallcom.2013.06.190
  • C. Sekine, T. Uchiumi, I. Shirotani and T. Yagi, Metal-insulator transition in PrRu4P12 with skutterudite structure. Phys. Rev. Lett. 79 (1997), pp. 3218–3221. doi: 10.1103/PhysRevLett.79.3218
  • M. Ameria, B. Abdelmounaima, M. Sebanea, R. Khenata, D. Varshney, B. Bouhafsd, Y. Al-Dourie, K. Boudiaa and I. Ameri, First-principles investigation on structural, elastic, electronic and thermodynamic properties of filled skutterudite PrFe4P12 compound for thermoelectric applications. Mol. Simul. 40 (2014), pp. 1236–1243. doi: 10.1080/08927022.2013.854898
  • R. Khenata, A. Bouhemadou, A.H. Reshak, R. Ahmed, B. Bouhafs and D. Rached, First-principles calculations of the elastic, electronic, and optical properties of the filled skutterudites CeFe4P12 and ThFe4P12. Phy. Rev. B 75 (2007), pp. 95131–95137. doi: 10.1103/PhysRevB.75.195131
  • P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka and J. Luitz WIEN2K, An Augmented Plane Wave þ Local Orbitals Program for Calculating Crystal Properties (2001).
  • http://elk.sourceforge.net.
  • W. Jeitschko, A.J. Foecker, D. Pashke, M.V. Dewalsky, B.H. Evers, B. Kunnen, et al., Crystal structure and properties of some filled and unfilled skutterudites: GdFe4P12, SmFe4P12, NdFe4As12, Eu0.54Co4Sb12, Fe0.5Ni0.5P3, CoP3 and NiP3. J. Inorg. Chem. 626 (2000), pp. 1112–1120.
  • S. Nautiyal, P. Yadav, M. Kumari, M. Sikarwar, P. Rajpoot and U.P. Verma, Ab-initio studies of structural and electronic properties of binary skutterudite CoAs3. AIP Conf. Proc. 1832 (2017), pp. 1–3.
  • A. Kjekshus and G. Pedersen, The crystal structures of IrAs3 and IrSb3 Acta Crystallogr. Acta Crystallogr. 14 (1961), pp. 1065–1070. doi: 10.1107/S0365110X61003053
  • S. Benalia, M. Hachemaou, D. Rached, R. Khenata, N. Bettahar and M. Benyahia, FP-LMTO calculations of elastic and electronic properties of the filled skutterudite CeRu4P12. J. Phys. Chem. Solids 70 (2009), pp. 622–626. doi: 10.1016/j.jpcs.2009.01.006
  • M. Jamal Cubic-elastic, http://www.WIEN2k.at/reg_user/unsupported/ cubic elast (2012).
  • J. Wang and S. Yip, Crystal instabilities at finite strain. Phys. Rev. Lett. 71 (1993), pp. 4182–4185. doi: 10.1103/PhysRevLett.71.4182
  • S.F. Pugh, XCII. relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45 (1954), pp. 823–843. doi: 10.1080/14786440808520496
  • G.K.H. Madsen and D.J. Singh, Boltztrap. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175 (2006), pp. 67–71. doi: 10.1016/j.cpc.2006.03.007
  • G.K.H. Madsen, Automated search for new thermoelectric materials: the case of LiZnSb. J. Am. Chem. Soc. 128 (2006), pp. 12140–12146. doi: 10.1021/ja062526a
  • A. Willfahart, Screen Printed Thermoelectric Devices. SE-601 74 Norrköping, (2014).
  • T.M. Tritt, Thermoelectric materials: principles, structure, properties, and Applications. Encyclopedia of Materials: Science and Technology (2002), pp. 1–11. ISBN: 0-08-043152-6.
  • G.S. Nolas, J. Sharp, and J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, Springer-Verlag, Berlin, Heidelberg, 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.