166
Views
5
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Influence of spin–orbit interaction, Zeeman effect and light polarisation on the electronic and optical properties of pseudo-elliptic quantum rings under magnetic field

&
Pages 749-767 | Received 08 Aug 2019, Accepted 28 Oct 2019, Published online: 02 Dec 2019

References

  • J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78 (1997), pp. 1335–1338. doi: 10.1103/PhysRevLett.78.1335
  • F. Nagasawa, D. Frustaglia, H. Saarikoski, K. Richter, and J. Nitta, Control of the spin geometric phase in semiconductor quantum rings. Nat. Commun. 4 (2013), pp. 2526. doi: 10.1038/ncomms3526
  • B. Molnar, F.M. Peeters, and P. Vasilopoulos, Spin-dependent magnetotransport through a ring due to spin-orbit interaction. Phys. Rev. B. 69 (2004), pp. 155335. doi: 10.1103/PhysRevB.69.155335
  • P. Földi, O. Kálmán, M.G. Benedict, and F.M. Peeters, Quantum rings as electron spin beam splitters. Phys. Rev. B. 73 (2006), pp. 155325. doi: 10.1103/PhysRevB.73.155325
  • S. Maekawa, S.O. Valenzuela, E. Saitoh, and T. Kimura, Spin Current, Oxford University Press, Oxford, 2012.
  • J. Xia, W. Ge, and K. Chang, Semiconductor Spintronics, World Scientific, Singapore, 2012.
  • G. Dresselhaus, Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 100 (1955), pp. 580–586. doi: 10.1103/PhysRev.100.580
  • E.I. Rashba, Properties of semiconductors with an extremum loop .1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State. 2 (1960), pp. 1109–1122.
  • D. Mailly, C. Chapelier, and A. Benoit, Experimental observation of persistent currents in GaAs-AlGaAs single loop. Phys. Rev. Lett. 70 (1993), pp. 2020–2023. doi: 10.1103/PhysRevLett.70.2020
  • G. Timp, A.M. Chang, J.E. Cunningham, T.Y. Chang, P. Mankiewich, R. Behringer, and R.E. Howard, Observation of the Aharonov-Bohm effect for ωcτ>1. Phys. Rev. Lett. 58 (1987), pp. 2814–2817. doi: 10.1103/PhysRevLett.58.2814
  • S. Pedersen, A.E. Hansen, A. Kristensen, C.B. Sørensen, and P.E. Lindelof, Observation of quantum asymmetry in an Aharonov-Bohm ring. Phys. Rev. B. 61 (2000), pp. 5457–5460. doi: 10.1103/PhysRevB.61.5457
  • J.A. Lorke, R.J. Luyken, A.O. Govorov, J.P. Kotthaus, J.M. Garcia, and P.M. Petroff, Spectroscopy of nanoscopic semiconductor rings. Phys. Rev. Lett. 84 (2000), pp. 2223–2226. doi: 10.1103/PhysRevLett.84.2223
  • F.E. Meijer, A.F. Morpurgo, and T.M. Klapwijk, One-dimensional ring in the presence of Rashba spin-orbit interaction: Derivation of the correct Hamiltonian. Phys. Rev. B. 66 (2002), pp. 033107. doi: 10.1103/PhysRevB.66.033107
  • J.S. Sheng and K. Chang, Spin states and persistent currents in mesoscopic rings: Spin-orbit interactions. Phys. Rev. B. 74 (2006), pp. 235315. doi: 10.1103/PhysRevB.74.235315
  • M.P. Nowak and B. Szafran, Spin-orbit coupling effects in two-dimensional circular quantum rings: Elliptical deformation of confined electron density. Phys. Rev. B. 80 (2009), pp. 195319. doi: 10.1103/PhysRevB.80.195319
  • Y. Liu, F. Cheng, X.J. Li, F.M. Peeters, and K. Chang, Tuning of the two electron states in quantum rings through the spin-orbit interaction. Phys. Rev. B. 82 (2010), pp. 045312. doi: 10.1103/PhysRevB.82.045312
  • A. Manaselyan, A. Ghazaryan, and T. Chakraborty, Effect of the spin–orbit coupling on the Raman spectra of a GaAs quantum ring with few electrons. Solid State Commun. 181 (2014), pp. 34–40. doi: 10.1016/j.ssc.2013.11.031
  • V. Mughnetsyan, A. Manaselyan, and A. Kirakosyan, Rashba spin–orbit coupling in a two-dimensional quantum ring superlattice. Superlatt. Microstruct. 82 (2015), pp. 584–591. doi: 10.1016/j.spmi.2015.03.001
  • V. Mughnetsyan, A. Manaselyan, and A. Kirakosyan, Effect of Rashba spin-orbit coupling and external magnetic field on electronic minibands in highly strained one-layer quantum ring superlattice. Superlatt. Microstruct. 104 (2017), pp. 10–18. doi: 10.1016/j.spmi.2017.02.001
  • S.E. Pourmand and G. Rezaei, The Rashba and Dresselhaus spin-orbit interactions effects on the optical: properties of a quantum ring. Physica B. 543 (2018), pp. 27–31. doi: 10.1016/j.physb.2018.04.046
  • A. Zamani, T. Azargoshasb, and E. Niknam, Absorption coefficient and refractive index change of a quantum ring in the presence of spin-orbit couplings: Temperature and Zeeman effect. Superlatt. Microstruct. 110 (2017), pp. 221–232. doi: 10.1016/j.spmi.2017.08.038
  • A. Zamani, F. Setareh, T. Azargoshasb, and E. Niknam, Spin-orbit coupling and applied magnetic field effects on electromagnetically induced transparency of a quantum ring at finite temperature. Superlatt. Microstruct. 115 (2018), pp. 40–52. doi: 10.1016/j.spmi.2018.01.005
  • S. Gumber, A.B. Bhattacherjee, and P.K. Jha, Spin transport in a Rashba-coupled two-dimensional quantum ring: An analytical model. Phys. Rev. B. 98 (2018), pp. 205408. doi: 10.1103/PhysRevB.98.205408
  • T. Chakraborty, A. Manaselyan, and M. Barseghyan, Effective tuning of electron charge and spin distribution in a dot-ring nanostructure at the ZnO interface. Physica E. 99 (2018), pp. 63–66. doi: 10.1016/j.physe.2018.01.013
  • S.E. Pourmand, G. Rezaei, and B. Vaseghi, Impacts of external fields and Rashba and Dresselhaus spin-orbit interactions on the optical rectification, second and third, harmonic generations of a quantum ring. Eur. Phys. J. B. 92 (2019), pp. 96. doi: 10.1140/epjb/e2019-90717-6
  • V. Ashrafi-Dalkhani, S. Ghajarpour-Nobandegani, and M.J. Karimi, Effects of spin-orbit interactions, external fields and eccentricity on the optical absorption of an elliptical quantum ring. Eur. Phys. J. B. 92 (2019), pp. 19. doi: 10.1140/epjb/e2018-90691-5
  • T. Raz, D. Ritter, and G. Bahir, Formation of InAs self-assembled quantum rings on InP. Appl. Phys. Lett. 82 (2003), pp. 1706–1708. doi: 10.1063/1.1560868
  • M. Hanke, Y.I. Mazur, E. Marega Jr., Z.Y. AbuWaar, G.J. Salamo, P. Schäfer, and M. Schmidbauer, Shape transformation during overgrowth of InGaAs/GaAs(001) quantum rings. Appl. Phys. Lett. 91 (2007), pp. 043103. doi: 10.1063/1.2760191
  • D. Bejan, C. Stan, and E.C. Niculescu, Optical properties of an elliptic quantum ring: Eccentricity and electric field effects. Opt. Mater. 78 (2018), pp. 207–219. doi: 10.1016/j.optmat.2018.02.008
  • D. Bejan and C. Stan, Oscillatory behaviour in the energy and nonlinear optical rectification spectra of elliptic quantum rings under electric field: Influence of impurity and eccentricity. Philos. Mag. 99 (2019), pp. 492–512. doi: 10.1080/14786435.2018.1546959
  • D. Bejan and C. Stan, Aharonov-Bohm oscillations in pseudo-elliptic quantum rings: Influence of geometry, eccentricity and electric field. Eur. Phys. J. Plus. 134 (2019), pp. 127. doi: 10.1140/epjp/i2019-12557-6
  • D. Bejan, C. Stan, and O. Toma, Magnetic field controlled induced transparency by Autler-Townes splitting in pseudo-elliptic quantum ring. Eur. Phys. J. B. 92 (2019), pp. 153. doi: 10.1140/epjb/e2019-100223-x
  • D. Bejan and G. Raseev, Laser-matter interaction at solid-gas interface in the Ap gauge: Linear and surface terms in desorption. Surf. Sci. 528 (2003), pp. 163–170. doi: 10.1016/S0039-6028(02)02627-4
  • E.C. Niculescu, C. Stan, D. Bejan, and C. Cartoaje, Impurity and eccentricity effects on the nonlinear optical rectification in a quantum ring under lateral electric fields. J. Appl. Phys. 122 (2017), pp. 144301. doi: 10.1063/1.4999673
  • R.E. Acosta, A.L. Morales, C.M. Duque, M.E. Mora-Ramos, and C.A. Duque, Optical absorption and refractive index changes in a semiconductor quantum ring: Electric field and donor impurity effects. Phys. Status Solidi B. 253 (2016), pp. 744–754. doi: 10.1002/pssb.201552514
  • Y.D. Sibirmovskii, I.S. Vasil’evskii, A.N. Vinichenko, I.S. Eremin, D.M. Zhigunov, N.I. Kargin, O.S. Kolentsova, P.A. Martyuk, and M.N. Strikhanov, Photoluminescence of GaAs/AlGaAs quantum ring arrays. Semiconductors 49 (2015), pp. 638–643. doi: 10.1134/S106378261505022X
  • R.D. Cook, D.S. Malkus, and M.E. Plesha, Concepts and Applications of Finite Element Analysis, 3rd ed., John Wiley & Sons, New York, 1989.
  • E. Paspalakis, J. Boviatsis and S. Baskoutas, Effects of probe field intensity in nonlinear optical processes in asymmetric semiconductor quantum dots. J. Appl. Phys. 114 (2013), pp. 153107. doi: 10.1063/1.4825320
  • J. Lee, H.N. Spector, W.C. Chou and C.S. Chu, Rashba spin splitting in parabolic quantum dots. J. Appl. Phys. 99 (2006), pp. 113708. doi: 10.1063/1.2201847

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.