118
Views
6
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Electronic and optical properties of Sr3X2 (X=N, P, As, Sb and Bi) compounds: first principles study

, , &
Pages 768-781 | Received 30 Apr 2019, Accepted 11 Nov 2019, Published online: 07 Dec 2019

References

  • T.D. Moustakas and R. Paiella, Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz. Rep. Prog. Phys. 80 (2017), pp. 106501. doi: 10.1088/1361-6633/aa7bb2
  • R. Yan, G. Khalsa, S. Vishwanath, Y. Han, J. Wright, S. Rouvimov, D.S. Katzer, N. Nepal, B.P. Downey, D.A. Muller, H.G. Xing, D.J. Meyer, and D. Jena, Gan/NbN epitaxial semiconductor/superconductor heterostructures. Nature 555 (2018), pp. 183–189. doi: 10.1038/nature25768
  • T. Yang, Z. Zhang, Y. Li, M. Lv, S. Song, Z. Wu, J. Yan, and S. Han, Structural and optical properties of zinc nitride films prepared by RF magnetron sputtering. Appl. Surf. Sci. 255 (2009), pp. 3544–3547. doi: 10.1016/j.apsusc.2008.07.210
  • M. Ullah, G. Murtaza, S.M. Ramay, and A. Mahmood, Structural, electronic, optical and thermoelectric properties of Mg3X2 (X= N, P, As, Sb, Bi) compounds. Mater. Res. Bull. 91 (2017), pp. 22–30. doi: 10.1016/j.materresbull.2017.03.012
  • M. Ullah, G. Murtaza, M. Yaseen, and S.A. Khan, Band structure features, chemical bonding and optical properties of Zn3X2 (X= N, P, As) compounds. J. Alloys Compd. 728 (2017), pp. 1226–1234. doi: 10.1016/j.jallcom.2017.09.100
  • J. Jian, G. Wang, C. Wang, W. Yuan, and X. Chen, Gan single crystals grown under moderate nitrogen pressure by a new flux: Ca3N2. J. Cryst. Growth 291 (2006), pp. 72–76. doi: 10.1016/j.jcrysgro.2006.03.016
  • J. Zhang, L. Song, A. Mamakhel, M.R.V. Jørgensen, and B.B. Iversen, High-performance low-cost n-type Se-Doped Mg3Sb2-based Zintl compounds for thermoelectric application. Chem. Mater. 29 (2017), pp. 5371–5383. doi: 10.1021/acs.chemmater.7b01746
  • H. Honda, H. Sakaguchi, I. Tanaka, and T. Esaka, Anode behaviors of magnesium–antimony intermetallic compound for lithium secondary battery. J. Power Sources 123 (2003), pp. 216–221. doi: 10.1016/S0378-7753(03)00517-2
  • K.K. Upadhyay and R.K. Sharma, Correlation between the refractive index and average energy gap for simple and complex binary compounds. Indian J. Phys. 84 (2010), pp. 55–60. doi: 10.1007/s12648-010-0002-6
  • A. Mokhtari and H. Akbarzadeh, Ab initio calculations of the electronic and structural properties of beryllium-, magnesium-and calcium-nitrides. Phys. B 337 (2003), pp. 122–129. doi: 10.1016/S0921-4526(03)00387-9
  • P. Vansant, P. Van Camp, V. Van Doren, and J. Martins, Variable-cell-shape-based structural optimization applied to calcium nitrides. Phys. Rev. B 57 (1998), pp. 7615–7620. doi: 10.1103/PhysRevB.57.7615
  • M. Martinez-Ripoll, A. Haase, and G. Brauer, The crystal structure of Sr2Sb. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 29 (1973), pp. 1715–1717. doi: 10.1107/S0567740873005327
  • K. Deller and B. Eisenmann, Die Kristallstruktur des SrAs3./The crystal structure of SrAs3. Z für Naturforsch. B 31 (1976), pp. 1550–1552. doi: 10.1515/znb-1976-1129
  • S.R. Römer, T. Dörfler, P. Kroll, and W. Schnick, Group II element nitrides M3N2 under pressure: a comparative density functional study. Phys. Status Solidi (b) 246 (2009), pp. 1604–1613. doi: 10.1002/pssb.200945011
  • M. Sedighi, M. Danesh, and S. Vaji, First-principles investigation of the structural and electronic properties of Sr3Sb2 in hexagonal phase. J. Zankoy Sulaimani – Part A 15 (2013), pp. 169–174. doi: 10.17656/jzs.10266
  • P. Hohenberg and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136 (1964), pp. B864–B871. doi: 10.1103/PhysRev.136.B864
  • W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140 (1965), pp. A1133–A1138. doi: 10.1103/PhysRev.140.A1133
  • P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, An augmented plane wave+ local orbitals program for calculating crystal properties, 2001.
  • Z. Wu and R.E. Cohen, More accurate generalized gradient approximation for solids. Phys. Rev. B 73 (2006), pp. 235116. doi: 10.1103/PhysRevB.73.235116
  • E. Engel and S.H. Vosko, Exact exchange-only potentials and the virial relation as microscopic criteria for generalized gradient approximations. Phys. Rev. B 47 (1993), pp. 13164–13174. doi: 10.1103/PhysRevB.47.13164
  • F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102 (2009), pp. 226401. doi: 10.1103/PhysRevLett.102.226401
  • K.M. Wong, M. Irfan, A. Mahmood, and G. Murtaza, First principles study of the structural and optoelectronic properties of the A2InSbO6 (A= Ca, Sr, Ba) compounds. Optik. (Stuttg) 130 (2017), pp. 517–524. doi: 10.1016/j.ijleo.2016.10.139
  • K.M. Wong, W. Khan, M. Shoaib, U. Shah, S.H. Khan, and G. Murtaza, Ab Initio investigation of the structural, electronic and optical properties of the Li2In2XY6 (X=Si, Ge; Y=S, Se) compounds. J. Electron. Mater. 47 (2018), pp. 566–576. doi: 10.1007/s11664-017-5805-1
  • K.M. Wong, S.M. Alay-e-Abbas, Y. Fang, A. Shaukat, and Y. Lei, Spatial distribution of neutral oxygen vacancies on ZnO nanowire surfaces: An investigation combining confocal microscopy and first principles calculations. J. Appl. Phys. 114 (2013), pp. 034901. doi: 10.1063/1.4813517
  • F. Wooten, Optical properties of Solids. Am. J. Phys. 41 (1973), pp. 939–940. doi: 10.1119/1.1987434
  • D.R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128 (1962), pp. 2093–2097. doi: 10.1103/PhysRev.128.2093

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.