539
Views
11
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Edge and surface antiferromagnetism in ABO3 perovskite-type nanoparticle within the effective field theory

&
Pages 642-657 | Received 19 Aug 2019, Accepted 24 Nov 2019, Published online: 03 Dec 2019

References

  • K.R. Tolman, Empirical models for structural effects of A-site point defects and ordering in Perovskites, Doctor of Philosophy in Materials Science and Engineering (2016), 2.
  • E.C.C. De Souza and R. Muccillo, Properties and applications of perovskite proton conductors. Mat. Res. 13 (2010), pp. 385–394. doi: 10.1590/S1516-14392010000300018
  • A. Navrotsky and D.J. Weidner, Perovskite: a structure of great interest to geophysics and materials science. American Geophysical Union; 1989. Geophysical Monograph.
  • H. Iwahara, T. Esaka, H. Uchida, and N. Maeda, Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ion. 3-4 (1981), pp. 359–363. doi: 10.1016/0167-2738(81)90113-2
  • H. Uchida, N. Maeda, and H. Iwahara, Relation between proton and hole conduction in SrCeO3-based solid electrolytes under water-containing atmospheres at high temperatures. Solid State Ion. 11 (1983), pp. 117–124. doi: 10.1016/0167-2738(83)90048-6
  • H. Iwahara, H. Uchida, K. Ono, and K. Ogaki, Proton conduction in sintered oxides based on BaCeO3. J. Electrochem. Soc. 135 (1988), pp. 529–533. doi: 10.1149/1.2095649
  • M. Feng and J.B. Goodenough, A superior oxide-ion electrolyte. Eur. J. Solid State Lnorg. Chem. 31 (1994), pp. 663–672.
  • Y. Teraoka, H.M. Zhang, K. Okamoto, and N. Yamazoe, Mixed ionic-electronic conductivity of La1−xSrxCo1−yFeyO3−δ perovskite-type oxides. Mater. Res. Bull. 23 (1988), pp. 51–58. doi: 10.1016/0025-5408(88)90224-3
  • S. Carter, A. Selcuk, R.J. Chater, J. Kajda, J.A. Kilner, and B.C.H. Steele, Oxygen transport in selected nonstoichiometric perovskite-structure oxides. Solid State Ion. 53-56 (1992), pp. 597–605. doi: 10.1016/0167-2738(92)90435-R
  • T. Fukui, S. Ohara, and S. Kawatsu, Conductivity of BaPrO3 based perovskite oxides. J. Power Sources. 71(1-2) (1998), pp.164–168. doi: 10.1016/S0378-7753(97)02813-9
  • D. Dimos and C. Mueller, Perovskite thin films for high-frequency capacitor applications. Annu. Rev. Mater. Res. 28 (1998), pp. 397–419.
  • T. Shaw, S. Trolier-McKinstry, and P. McIntyre, The properties of ferroelectric films at small dimensions. Annu. Rev. Mater. Sci. 30 (2000), pp. 263–298. doi: 10.1146/annurev.matsci.30.1.263
  • M. Moret, M. Devillers, K. Worhoff, and P. Larsen, Optical properties of PbTiO3, PbZrxTi1–xO3, and PbZrO3 films deposited by metalorganic chemical vapor on SrTiO3. J. Appl. Phys. 92 (2002), pp. 468–474. doi: 10.1063/1.1486048
  • F. Jona, G. Shirane, and R. Pepinsky, Optical study of PbZrO3 and NaNbO3 single crystal. Phys. Rev. 97 (1955), pp. 1584–1590. doi: 10.1103/PhysRev.97.1584
  • M. Weber, M. Bass, and G. Demars, Laser action and spectroscopic properties of Er3+ in YAlO3. J. Appl. Phys. 42 (1971), pp. 301–305. doi: 10.1063/1.1659588
  • K. Rao and K. Yoon, Review of electrooptic and ferroelectric properties of barium sodium niobate single crystals. J. Mater. Sci. 38 (2003), pp. 391–400. doi: 10.1023/A:1021851027345
  • J. Ihringer, J. Maichle, W. Prandl, A. Hewat, and T. Wroblewski, Crystal-structure of the ceramic superconductor BaPb0.75Bi0.25O3. Z. Phys. B Condens. Matter. 82 (1991), pp. 171–176. doi: 10.1007/BF01324322
  • R.J. Cava, B. Batlogg, J.J. Krajewski, R. Farrow, L.W. Rupp, A.E. White, K. Short, W.F. Peck, and T. Kometani, Superconductivity near 30-K without copper-the Ba0.6K0.4BiO3 perovskite. Nature. 332 (1988), pp. 814–816. doi: 10.1038/332814a0
  • T.S. Sampathkumar, S. Srinivasan, T. Nagarajan, and U. Balachandra, Properties of YBa2Cu3O7–δ-BaBiO3 composite superconductors. Appl. Supercond. 2(1) (1994), pp. 29–34. doi: 10.1016/0964-1807(94)90051-5
  • G.H. Jonker, Magnetic compounds with perovskite structure. 4. Conducting and non-conducting compounds, Physica. 22 (1956), pp. 707–722. doi: 10.1016/S0031-8914(56)90023-4
  • J.M. DeTeresa, M.R. Ibarra, P.A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. García, A. del Moral, and Z. Arnold, Evidence for magnetic polarons in the magnetoresistive perovskites, Nature. 386 (1997), pp. 256–259. doi: 10.1038/386256a0
  • Y. Moritomo, A. Asamitsu, H. Kuwahara, and Y. Tokura, Giant magnetoresistance of manganese oxides with a layered perovskite structure, Nature. 380 (1996), pp. 141–144. doi: 10.1038/380141a0
  • G.H. Jonker and J.H.V. Santen, Ferromagnetic compounds of manganese with perovskite structure, Physica. 16 (1950), pp. 337–349. doi: 10.1016/0031-8914(50)90033-4
  • J. Longo and R. Ward, Magnetic compounds of Hexavalent rhenium with the perovskite-type structure, J. Am. Chem. Soc. 83 (1961), pp. 2816–2818. doi: 10.1021/ja01474a007
  • A. Gupta, T.R. McGuire, P.R. Duncombe, M. Rupp, J.Z. Sun, W.J. Gallagher, and G. Xiao, Growth and giant magnetoresistance properties of La-deficient LaxMnO3−δ (0.67 ≤ x ≤ 1) films, Appl. Phys. Lett. 67 (1995), pp. 3494–3496. doi: 10.1063/1.115258
  • M. Gibert, P. Zubko, R. Scherwitzl, J. Íñiguez, and J.M. Triscone, Exchange bias in LaNiO3-LaMnO3 superlattices, Nat. Mater. 11 (2012), pp. 195–198. doi: 10.1038/nmat3224
  • J.G. Cheng, J.S. Zhou, and J.B. Goodenough, Lattice effects on ferromagnetism in perovskite ruthenates, Proc. Natl. Acad. Sci. 110 (2013), pp. 13312–13315. doi: 10.1073/pnas.1311871110
  • J.M. Longo, P.M. Raccah, and J.B. Goodenough, Magnetic properties of SrRuO3 and CaRuO3, J. Appl. Phys. 39 (1968), pp. 1327–1328. doi: 10.1063/1.1656282
  • Y. Tokunaga, N. Furukawa, H. Sakai, Y. Taguchi, T.H. Arima, and Y. Tokura, Composite domain walls in a multiferroic perovskite ferrite, Nat Mater. 8 (2009), pp. 558–562. doi: 10.1038/nmat2469
  • C.A. López, M.E. Saleta, J. Curiale, and R.D. Sánchez, Crystal field effect on the effective magnetic moment in A2CoWO6 (A = Ca, Sr and Ba), Mater. Res. Bull. 47 (2012), pp. 1158–1163. doi: 10.1016/j.materresbull.2012.02.008
  • J.M. Michalik, J.M. De Teresa, C. Ritter, J. Blasco, D. Serrate, M.R. Ibarra, C. Kapusta, J. Freudenberger, and N. Kozlova, High-field magnetization measurements in Sr2CrReO6 double perovskite: evidence for orbital contribution to the magnetization, E.P.L. 78 (2007), p. 17006.
  • B. Ranjbar, E. Reynolds, P. Kayser, B.J. Kennedy, J.R. Hester, and J.A. Kimpton, Structural and magnetic properties of the iridium double perovskites Ba(2-x)Sr(x)YIrO6, Inorg. Chem. 54 21 (2015), pp.10468–10476. doi: 10.1021/acs.inorgchem.5b01905
  • N. Reyren, S. Thiel, A.D. Caviglia, L. Fitting Kourkoutis, G. Hammerl, C. Richter, C.W. Schneider, T. Kopp, A.-S. Rüetschi, D. Jaccard, et al., Superconducting interfaces between insulating oxides, Science. 317 (2007), pp. 1196–1199. doi: 10.1126/science.1146006
  • X.H. Zhu, X.B. Xiao, X.R. Chen, and B.G. Liu, Electronic structure, magnetism and optical properties of orthorhombic GdFeO3 from first principles, RSC Adv. 7 (2017), pp. 4054–4061. doi: 10.1039/C6RA25259A
  • A. FakhimLamrani, M. Ouchri, A. Benyoussef, M. Belaiche, and M. Loulidi, Half-metallic antiferromagnetic behavior of double perovskite Sr2OsMoO6: first principle calculations, J. Magn. Magn. Mater. 345 (2013), pp. 195–200. doi: 10.1016/j.jmmm.2013.06.029
  • V.S. Zhandun and V.I. Zinenko, The effect of structural ordering on the magnetic, electronic, and optical properties of the LaPbMnSbO6 double perovskite, J. Alloy. Compd. 671 (2016), pp. 184–191. doi: 10.1016/j.jallcom.2016.02.085
  • H.T. Dang and A.J. Millis, Theory of ferromagnetism in vanadium-oxide based perovskites, Phys. Rev. B. 87 (2013), pp. 15–25.
  • O. El Rhazouani, Z. Zarhri, A. Benyoussef, and A. El Kenz, Magnetic properties of the fully spin-polarized Sr2CrOsO6 double perovskite: a Monte Carlo simulation, Phys. Lett. A. 380(13) (2016), pp. 1241–1246. doi: 10.1016/j.physleta.2016.02.003
  • O. El Rhazouani, A. Benyoussef, Z. Zarhri, and A. El Kenz, Antisite disorder study by Monte Carlo simulation of the double perovskite Sr(2)CrReO(6), J. Magn. Magn. Mater. 401 (2016), pp. 897–901. doi: 10.1016/j.jmmm.2015.11.014
  • O. El rhazouani and A. Slassi, Low field magnetocaloric effect in the double perovskite Sr 2 CrMoO6: Monte Carlo simulation, Comp. Cond. Mat. 11 (2017), pp. 55–59.
  • H. Labrim, A. Jabar, A. Belhaj, S. Ziti, L. Bahmad, L. Laânab, and A. Benyoussef, Magnetic proprieties of La2FeCoO6 double perovskite: Monte Carlo study, J. Alloy. Compd. 641 (2015), pp. 37–42. doi: 10.1016/j.jallcom.2015.04.068
  • M. Oumarou, N. Aknin, N. Mohamedou, and M.L. Ould Ne, Magnetic properties of the perovskite PrMnO3: Monte Carlo study, I.J.S.E.R. 7 (2016), pp. 1836–1841.
  • R. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, and E.K. Hlil, Monte Carlo simulation study of magnetocaloric effect in NdMnO(3) perovskite, J. Magn. Magn. Mater. 401 (2016), pp. 91–95. doi: 10.1016/j.jmmm.2015.10.019
  • G. Dimitri Ngantso, A. Benyoussef, and A. El Kenz, Monte Carlo study of magnetic properties and critical behavior of Sr2CrMoO6, Curr. Appl. Phys. 16 (2016), pp. 211–219. doi: 10.1016/j.cap.2015.11.020
  • M. El Yadari, L. Bahmad, A. El Kenz, and A. Benyoussef, Monte Carlo study of the double perovskite nano Sr2VMoO6, J. Alloy. Compd. 579 (2013), pp. 86–91. doi: 10.1016/j.jallcom.2013.01.158
  • L. Brey, M.J. Calderón, S. Das Sarma, and F. Guinea, Mean-field theory for double perovskites: coupling between itinerant electron spins and localized spins, Phys. Rev. B. 74 (2006), p. 094429. doi: 10.1103/PhysRevB.74.094429
  • M. Arejdal, L. Bahmad, A. Abbassi, and A. Benyoussef, Magnetic properties of the double perovskite Ba2NiUO6, Physica A Stat. Mech. Appl. 437 (2015), pp. 375–381. doi: 10.1016/j.physa.2015.05.108
  • O. El Rhazouani, A. Benyoussef, S. Naji, and A. El Kenz, Magnetic properties of double perovskite Sr2CrReO6: mean field approximation and Monte Carlo simulation, Physica A Stat. Mech. Appl. 397 (2014), pp. 31–39. doi: 10.1016/j.physa.2013.11.006
  • Z.G. Yu, Effective-mass model and magneto-optical properties in hybrid perovskites, Sci. Rep. 6 (2016), p. 28576. doi: 10.1038/srep28576
  • P. Sanyal and P. Majumdar, Magnetic model for the ordered double perovskites, Phys Rev B. 80 (2009), p. 054411. doi: 10.1103/PhysRevB.80.054411
  • F. Estrada, E.J. Guzmán, O. Navarro, and M. Avignon, Curie temperature behavior in half-metallic ferromagnetic double perovskites within the electronic correlation picture, Phys. Rev. B. 97 (2018), p. 195155. doi: 10.1103/PhysRevB.97.195155
  • W.E. Pickett and D.J. Singh, Electronic structure and half-metallic transport in the La1-xCaxMnO3 system, Phys. Rev. B. 53 (1996), pp. 1146–1160. doi: 10.1103/PhysRevB.53.1146
  • T. Kaneyoshi, Differential operator technique in the Ising spin systems, Acta. Phys. Pol. A. 83 (1993), pp. 703–738. doi: 10.12693/APhysPolA.83.703
  • W. Jiang, Y.Y. Yang, and A.B. Guo, Study on magnetic properties of a Nano-Graphene Bilayer, Carbon. N. Y. 95 (2015), pp. 190–198. doi: 10.1016/j.carbon.2015.07.097
  • J.P. Santos and F.C. SáBarreto, An effective-field theory study of trilayerIsing nanostructure: thermodynamic and magnetic properties, J. Magn. Magn. Mater. 439 (2017), pp. 114–119. doi: 10.1016/j.jmmm.2017.05.017
  • N. Şarlı, Generation of an external magnetic field with the spin orientation effect in a single layer Isingnanographene, Physica E. 83 (2016), pp. 22–29. doi: 10.1016/j.physe.2016.04.009
  • N. Şarlı, S. Akbudak, and M.R. Ellialtıoğlu, The peak effect (PE) region of the antiferromagnetic two layer Isingnanographene, Physica B. 452 (2014), pp. 18–22. doi: 10.1016/j.physb.2014.06.044
  • N. Şarlı, S. Akbudak, Y. Polat, and M.R. Ellialtıoğlu, Effective distance of a ferromagnetic trilayer Ising nanostructure with an ABA stacking sequence, Physica A. 434 (2015), pp.194–200. doi: 10.1016/j.physa.2015.04.002
  • N. Şarlı, Artificial magnetism in a carbon diamond nanolattice with the spin orientation effect, Diamond & Related Mater. 64 (2016), pp. 103–109. doi: 10.1016/j.diamond.2016.01.027
  • [60] I.T. Padilha, J. Ricardo de Sousa, M.A. Neto, O.R. Salmon, and J.R. Viana, Thermodynamics properties of copper-oxide superconductors described by an Ising frustrated model, Phys. A. 392 (2013), pp. 4897–4904. doi: 10.1016/j.physa.2013.06.044
  • M. Keskin and N. Şarlı, Superconducting phase diagram of the yttrium, barium and YBa-core in YBCO by an Ising model, JEPT. 127 (2018), pp. 516–524.
  • M. AbouGhantous, E.A. Moujaes, J.L. Dunn, and A. Khater, Cooperative Jahn-Teller effect in a 2D mesoscopic C60n− system with D5d symmetry adsorbed on buffer layers using Ising EFT model, Eur. Phys. J. B. 85 (2012), pp. 178–191. doi: 10.1140/epjb/e2012-30172-5
  • E. Kantar, Superconductivity-like phenomena in anferrimagnetic endohedral fullerene with diluted magnetic surface, Solid State Commun. 263 (2017), pp.31–37. doi: 10.1016/j.ssc.2017.07.006
  • E. Kantar, The thermal behaviors and phase diagrams of the Ising-type endohedral fullerene with magnetic core and diluted magnetic shell (Core@Shell20), Eur. Phys. J. B. 90 (2017), p.152. doi: 10.1140/epjb/e2017-80224-3
  • T. Kaneyoshi, Unconventional phase diagrams in an ultra-thin spin-1 Ising film with Site (or bond) dilution at the surfaces, Physica B. 454 (2014), pp. 204–209. doi: 10.1016/j.physb.2014.07.065
  • W. Jiang, H.Y. Guan, Z. Wang, and A.B. Guo, Nanoparticle with a ferrimagnetic interlayer coupling in the presence of single-ion anisotropis, Physica B. 407 (2012), pp. 378–383. doi: 10.1016/j.physb.2011.11.002
  • S. Bouhou, M.E. Hamri, I. Essaoudi, A. Ainane, R. Ahuja, and F. Dujardin, Some hysteresis loop features of 2D magnetic spin-1 Ising nanoparticle: shape lattice and single-ion anisotropy effects, Chin. J. Phys. 55 (2017), pp. 2224–2235.
  • M.E. Hamri, S. Bouhou, I. Essaoudi, A. Ainane, and R. Ahuja, Reentrant phenomenon in a transverse spin-1 Ising nanoparticle with diluted magnetic sites, J. Magn. Magn. Mater. 442 (2017), pp. 53–61. doi: 10.1016/j.jmmm.2017.06.043
  • N. Şarlı, Band structure of the susceptibility, internal energy and specific heat in a mixed core/shell Ising nanotube, Physica B. 411 (2013), pp.12–25. doi: 10.1016/j.physb.2012.08.046
  • N. Şarlı and M. Keskin, Two distinct magnetic susceptibility peaks and magnetic reversal events in a cylindrical core/shell spin-1 Ising nanowire, Solid State Commun. 152 (2012), pp.354–359. doi: 10.1016/j.ssc.2011.12.015
  • M. Keskin and N. Şarlı, Magnetic properties of the binary nickel/bismuth alloy, J. Magn. Magn. Mater. 437 (2017), pp. 1–6. doi: 10.1016/j.jmmm.2017.04.053
  • A. Duran, Lattice location effect of Ni50Mn36Sn14Heusler alloy, J Supercond. Nov. Magn. 31 (2018), pp. 1101–1109. doi: 10.1007/s10948-017-4274-3
  • A. Duran, Surface superconductivity in Ni50Mn36Sn14 Heusler alloy, J Supercond. Nov. Magn. 31 (2018), pp. 4053–4062. doi: 10.1007/s10948-018-4686-8
  • E. Kantar and M. Keskin, Thermal and magnetic properties of ternary mixed Ising nanoparticles with core-shell structure: effective-field theory approach, J. Magn. Magn. Mater. 349 (2014), pp. 165–172. doi: 10.1016/j.jmmm.2013.08.034
  • N. Şarlı, The effects of next nearest-neighbor exchange interaction on the magnetic properties in the one-dimensional Ising system, Physica E. 63 (2014), pp. 324–328. doi: 10.1016/j.physe.2014.06.028
  • N. Şarlı, Paramagnetic atom number and paramagnetic critical pressure of the sc, bcc and fcc Ising nanolattices, J. Magn. Magn. Mater. 374 (2015), pp. 238–244. doi: 10.1016/j.jmmm.2014.08.008
  • N. Şarlı, Superconductor core effect of the body centered orthorhombic nanolattice structure, J Supercond. Nov. Magn. 28 (2015), pp. 2355–2363. doi: 10.1007/s10948-015-3061-2
  • N. Şarlı, G.D. Yıldız, Y.G. Yıldız, and N.K. Yağcı, Magnetic properties of the Martensitic transformations with twinned and detwinned, Physica B. 553 (2019), pp. 161–168. doi: 10.1016/j.physb.2018.10.026
  • J.M. Wang, W. Jiang, C.L. Zhou, Z. Shi, and C. Wu, Magnetic properties of a nanoribbon: an effective-field theory, Superlattices Microstruct. 102 (2017), pp. 359–372. doi: 10.1016/j.spmi.2016.12.040
  • O.E. Rhazouani, A. Benyoussef, and A.E. Kenz, Phase diagram of the double perovskite Sr2CrReO6: effective-field theory, J. Magn. Magn. Mater. 377 (2015), pp. 319–324. doi: 10.1016/j.jmmm.2014.10.127
  • R. Pandu, CrFe2O4 – BiFeO3 perovskite multiferroic nanocomposites – a review, Mat. Sci. Res. India 11 (2014), pp. 128–145. doi: 10.13005/msri/110206
  • L. Dongxue and Y. Liu, Recent progress of dopant-free organic hole-transporting materials in perovskite solar cells, J. Semicond. 38 (2017), p. 011005. doi: 10.1088/1674-4926/38/1/011005
  • S. Luo and W.A. Daoud, Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design, J. Mater. Chem. A. 3 (2015), pp. 8992–9010. doi: 10.1039/C4TA04953E
  • H.S. Kim, S.H. Im, and N.G. Park, Organolead Halide perovskite: new horizons in solar cell research, J. Phys. Chem. C. 118 (2014), pp. 5615–5625. doi: 10.1021/jp409025w
  • L. Lang, J.H. Yang, H.R. Liu, H.J. Xiang, and X.G. Gong, First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites, Phys. Lett. A. 378 (2014), pp. 290–293. doi: 10.1016/j.physleta.2013.11.018
  • T.T.M. Palstra, The magneto-electric properties of RMnO3 compounds, in Rare Earth Oxide Thın Films: Growth, Characterizatıon, and Applicatıons, (106 ed.). M. Fanciulli, & G. Scarel, eds., (topics in applied physics; 106). Berlin: Springer, pp. 391–399.
  • B. Boughazi, M. Boughrara, and M. Kerouad, The phase diagrams and the magnetic properties of a ternary mixed ferrimagnetic nanowire, J. Magn. Magn. Mater. 434 (2017), pp. 37–46. doi: 10.1016/j.jmmm.2017.02.059
  • I.J.L. Diaz and N.S. Branco, Ferrimagnetism and compensation temperature in spin-1/2 Isingtrilayers, Physica B. 529 (2018), pp. 73–79. doi: 10.1016/j.physb.2017.10.036
  • G. Mert, The multi-compensation temperatures for the four-sublattice Heisenberg ferrimagnetic system, Physica A. 404 (2014), pp. 217–223. doi: 10.1016/j.physa.2014.02.056
  • N. De La Espriella, C.A. Mercado, and J.C. Madera, Spin compensation temperatures in the Monte Carlo study of a mixed spin-2 and spin-5/2 Ising ferrimagnetic system, J. Magn. Magn. Mater. 401 (2016), pp. 22–29. doi: 10.1016/j.jmmm.2015.09.083
  • S. Aouini, S. Ziti, H. Labrim, and L. Bahmad, Compensation temperature in a nano-square with a core-shell structure: Monte Carlo study, Superlattice Microst. 100 (2016), pp. 246–251. doi: 10.1016/j.spmi.2016.09.032
  • T. Kaneyoshi, Compensation temperature in a cylindrical Ising nanowire (or nanotube), Physica A. 390 (2011), pp. 3697–3703. doi: 10.1016/j.physa.2011.06.003
  • X. Shi and Y. Qi, Ferrimagnetic ordering behaviors and compensation temperatures in the Fe II Fe III bimetallic oxalates: effective-field theory, Physica B. 495 (2016), pp.117–122. doi: 10.1016/j.physb.2016.05.001
  • R. Ranatunga, M.F. Vitha, and P.W. Carr, Mechanistic implications of the equality of compensation temperatures in chromatography, J Chromatogr A. 946 (2002), pp. 47–49. doi: 10.1016/S0021-9673(01)01539-4
  • E. Machado and G.M. Buendı´a, Mixed Ising models with two compensation temperatures, J. Magn. Magn. Mater. 272–276 (2004), pp. 249–250. doi: 10.1016/j.jmmm.2003.11.104
  • E. Kış-Çam and E. Aydiner, Compensation temperature of 3d mixed ferro-ferrimagnetic ternary alloy, J. Magn. Magn. Mater. 322 (2010), pp. 1706–1709. doi: 10.1016/j.jmmm.2009.10.029
  • J. Dely, A. Bobák, and M. Žukovič, Compensation temperatures and magnetic susceptibility of a mixed ferro-ferrimagnetic ternary alloy, Phys. Lett. A. 373 (2009), pp. 3197–3200. doi: 10.1016/j.physleta.2009.07.003
  • G.M. Buendía and J.E. Villarroel, Compensation temperatures of mixed ferro-ferrimagnetic ternary alloys, J. Magn. Magn. Mater. 310 (2007), pp. e495–e497. doi: 10.1016/j.jmmm.2006.10.461
  • E. Aydiner, Y. Yüksel, E. Kis-Cam, and H. Polat, Dependence on dilution of critical and compensation temperatures of a two-dimensional mixed spin-1/2 and spin-1 system, J. Magn. Magn. Mater. 321 (2009), pp. 3193–3197. doi: 10.1016/j.jmmm.2009.05.042
  • A. Belhaj, A. Jabar, H. Labrim, S. Ziti, L. Bahmad, L. Laânab, and A. Benyoussef, Compensation temperature in a dendrimer nano-system with a core–shell structure: Monte Carlo study, Solid State Commun. 226 (2016), pp. 54–59. doi: 10.1016/j.ssc.2015.11.010
  • X. Shi and Y. Qi, Existence of a dynamic compensation temperature of the mixed spin-1 and spin-3/2 Ising model within the effective-field theory, Physica A. 430 (2015), pp. 93–100. doi: 10.1016/j.physa.2015.02.078
  • U.V. Vaidya, V.C. Rakhecha, S. Sumithra, S. Ramakrishnan, and A.K. Grover, Field and sample history dependence of the compensation temperature in Sm0.97Gd0.03Al2, J. Magn. Magn. Mater. 310 (2007), pp. 1761–1763. doi: 10.1016/j.jmmm.2006.10.586
  • A. Bobák, J. Dely, and M. Žukovič, Phase transition and compensation temperature in the mixed spin-1 and spin-12 anisotropic Heisenberg ferrimagnet, Physica A. 390 (2011), pp. 1953–1960. doi: 10.1016/j.physa.2011.02.028
  • C. Ekiz and R. Erdem, Effect of crystal-field potential on compensation temperature of a mixed spin-1/2 and spin-1 Ising ferrimagnetic system, Phys. Lett. A. 352 (2006), pp. 291–295. doi: 10.1016/j.physleta.2005.12.037
  • Y. Liu, A.-Y. Hu, and H.-Y. Wang, Compensation temperature of the two-dimension mixed spin-1 and spin-3/2 anisotropic Heisenberg ferrimagnet, J. Magn. Magn. Mater. 411 (2016), pp. 55–61. doi: 10.1016/j.jmmm.2016.03.060
  • A. Özkılıç and Ü. Temizer, Dynamic phase transitions and compensation temperatures in the mixed spin-1 and spin-5/2 Ising system on alternate layers of a hexagonal lattice, J. Magn. Magn. Mater. 330 (2013), pp. 55–65. doi: 10.1016/j.jmmm.2012.10.029
  • N. De La Espriella, J.C. Madera, and A. Sánchez-Caraballo, Reentrant and spin compensation phenomena in an Ising type ferrimagneticsystem, Physica A. 511 (2018), pp. 289–301. doi: 10.1016/j.physa.2018.07.053
  • H.K. Mohamad, E.P. Domashevskaya, and A.F. Klinskikh, Compensation temperatures induced by longitudinal fields in a mixed spin Ising ferrimagnet, Solid State Commun. 150 (2010), pp. 1253–1257. doi: 10.1016/j.ssc.2010.03.033
  • T. Korkmaz and Ü. Temizer, Dynamic compensation temperature in the mixed spin-1 and spin-2 Ising model in an oscillating field on alternate layers of a hexagonal lattice, J. Magn. Magn. Mater. 324 (2012), pp. 3876–3886. doi: 10.1016/j.jmmm.2012.06.039
  • R. Morales, L.M. Álvarez-Prado, J.I. Martı´n, and J.M. Alameda, Compensation temperatures and composition homogeneity in amorphous GdxCo1−x films, J. Magn. Magn. Mater. 272–276 (2004), pp. 1427–1429. doi: 10.1016/j.jmmm.2003.12.147
  • H.K. Mohamad, Spin compensation temperatures induced by longitudinal fields in a mixed spin-3/2 and spin-5/2 Ising ferrimagnet, J. Magn. Magn. Mater. 323 (2011), pp. 61–66. doi: 10.1016/j.jmmm.2010.08.030
  • N. De La Espriella, C.A. Mercado, and G.M. Buendía, Critical and compensation points of a mixed spin-2-spin-5/2 Ising ferrimagnetic system with crystal field and nearest and next-nearest neighbors interactions, J. Magn. Magn. Mater. 417 (2016), pp. 30–36. doi: 10.1016/j.jmmm.2016.05.046
  • A. Feraoun and M. Kerouad, Magnetic properties of a mixed spin Ising nanowire with inner core, inter core-shell and outer shell morphology, Comput. Condens. Matter. 16 (2018), p. e00297. doi: 10.1016/j.cocom.2018.e00297
  • T. Kaneyoshi, The relation between compensation temperature and anisotropy in a ferrimagnetic bilayer system with disordered interfaces, Solid State Commun. 93 (1995), pp. 691–695. doi: 10.1016/0038-1098(94)00752-7
  • M. El Hamri, S. Bouhou, I. Essaoudi, A. Ainane, and R. Ahuja, Magnetic properties of a diluted spin-1/2 Isingnanocube, Physica A. 443 (2016), pp. 385–398. doi: 10.1016/j.physa.2015.09.084
  • O. Dakir, A. El Kenz, and A. Benyoussef, Magnetic properties of core–shell (1/2–3/2) nanoparticle: Monte Carlo simulation, Physica A. 426 (2015), pp.45–55. doi: 10.1016/j.physa.2015.01.042
  • R. Masrour, A. Jabar, A. Benyoussef, and M. Hamedoun, Magnetic properties of cluster dendrimers of core/shell with mixed spins σ = 3/2 and S = 2: A Monte Carlo study, Chem. Phys. Lett. 691 (2018), pp. 199–205. doi: 10.1016/j.cplett.2017.11.018
  • I.J.L. Diaz and N.S. Branco, Monte Carlo simulations of an Ising bilayer with non-equivalent planes, Physica A. 468 (2017), pp. 158–170. doi: 10.1016/j.physa.2016.10.055
  • I.J.L. Diaz and N.S. Branco, Monte Carlo study of an anisotropic Ising multilayer with antiferromagnetic interlayer couplings, Physica A. 490 (2018), pp. 904–917. doi: 10.1016/j.physa.2017.09.005
  • H.K. Mohamad, E.P. Domashevskaya, and A.F. Klinskikh, Spin compensation temperatures in the mean-field approximation of a mixed spin-2 and spin-5/2 Isingferrimagnetic system, Physica A. 388 (2009), pp. 4713–4718. doi: 10.1016/j.physa.2009.08.014
  • R. Masrour, A. Jabar, A. Benyoussef, and M. Hamedoun, Mixed spin-5/2 and spin-2 Ising ferrimagnetic system on the Bethe lattice, J. Magn. Magn. Mater. 393 (2015), pp. 151–156. doi: 10.1016/j.jmmm.2015.05.017
  • Q. Zhang and G.-Z. Wei, Compensation temperatures of mixed spin-2 and spin-52 ferrimagnetic system with interlayer coupling; a study of a molecular-based magnet, J. Magn. Magn. Mater. 253 (2002), pp. 96–104. doi: 10.1016/S0304-8853(01)00348-1
  • N. Zaim, A. Zaim, and M. Kerouad, Compensation behavior of a ferrimagnetic nanoparticle system with binary alloy shell, Solid State Commun. 246 (2016), pp. 23–28. doi: 10.1016/j.ssc.2016.07.013
  • E. Kantar, Effective field study of the magnetism and superconductivity in idealisedIsing-type X@Y60 endohedral fullerene system, Philos. Mag. 99, (2019), pp. 1669–1693. doi: 10.1080/14786435.2019.1605210

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.