635
Views
14
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effect of irradiation on microstructure and hardening of Cr–Fe–Ni–Mn high-entropy alloy and its strengthened version

, , , , , , , , & ORCID Icon show all
Pages 822-836 | Received 06 Sep 2019, Accepted 06 Dec 2019, Published online: 19 Dec 2019

References

  • J.W. Yeh, Y.L. Chen and S.J. Lin, High-entropy alloys – a new era of exploitation. Mater. Sci. Forum 560 (2007), pp. 1–9. doi: 10.4028/www.scientific.net/MSF.560.1
  • D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122 (2017), pp. 448–511. doi: 10.1016/j.actamat.2016.08.081
  • M. Tsai and J. Yeh, High-entropy alloys: a critical review. Mater. Res. Lett. 2 (2014), pp. 107–123. doi: 10.1080/21663831.2014.912690
  • Y. Zhang, G. Stocks and K. Jin, Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat. Commun. 6 (2015), p. 8736. doi: 10.1038/ncomms9736
  • C. Lu, L. Niu and N. Chen, Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat. Commun. 7 (2016), pp. 13564. doi: 10.1038/ncomms13564
  • C. Lu, Z. Lu and X. Wang, Enhanced radiation-tolerant oxide dispersion strengthened steel and its microstructure evolution under helium-implantation and heavy-ion irradiation. Sci. Rep. 7 (2017), pp. 1–7. doi: 10.1038/s41598-016-0028-x
  • S.V. Starostenko, V.M. Voyevodin and M.A. Tyкhonovs’kyi, Microstructure of 08Kh18N10 T austenitic steel mechanically alloyed with nanooxides of the Y2O3-ZrO2 system. Mater. Sci. 51 (2016), pp. 822–832. doi: 10.1007/s11003-016-9908-2
  • G.D. Tolstolutskaya, V.V. Ruzhytskiy and I.E. Kopanetz, Accelerating complex for study of helium and hydrogen behavior in conditions of radiation defects generation. Probl. Atom. Sci. Tech. 1 (2010), pp. 135–140.
  • SRIM (2008), http://www.srim.org/
  • ASTM E521-96 (2009), ASTM.
  • G.N. Tolmachova, G.D. Tolstolutskaya and S.A. Karpov, Application of nanoindentation for investigation of radiation damage in SS316 stainless steel. Probl. Atom. Sci. Tech. 5 (2015), pp. 168–173.
  • W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7 (1992), pp. 1564–1583. doi: 10.1557/JMR.1992.1564
  • M. Klinger, More features, more tools, more CrysTBox. J. Appl. Cryst. 50 (2017), pp. 1226–1234. doi: 10.1107/S1600576717006793
  • M.-R. He, S. Wang and K. Jin, Enhanced damage resistance and novel defect structure of CrFeCoNi under in situ electron irradiation. Scripta Mater. 125 (2016), pp. 5–9. doi: 10.1016/j.scriptamat.2016.07.023
  • B.S. Sungurov, G.D. Tolstolutskaya and S.A. Karpov, Characterization of dislocation type defects formed at low-energy deuterium irradiation of SS316 stainless steel. Probl. Atom. Sci. Tech. 2 (2018), pp. 8–12.
  • M. Saleh, Z. Zaidi and M. Ionescu, Relationship between damage and hardness profiles in ion irradiated SS316 using nanoindentation – experiments and modeling. Int. J. Plast. 86 (2016), pp. 151–169. doi: 10.1016/j.ijplas.2016.08.006
  • W.D. Nix and H.J. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46 (1998), pp. 411–425. doi: 10.1016/S0022-5096(97)00086-0
  • R. Kasada, Y. Takayama and K. Yabuuchi, A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques. Fusion Eng. Des. 86 (2011), pp. 2658–2661. doi: 10.1016/j.fusengdes.2011.03.073
  • S.A. Karpov, G.D. Tolstolutskaya and B.S. Sungurov, Hardening of SS316 stainless steel caused by the irradiation with argon ions. Mater. Sci. 52 (2016), pp. 377–384. doi: 10.1007/s11003-016-9967-4
  • T.S. Byun and K. Farrell, Irradiation hardening behaviour of polycrystalline metals after low temperature irradiation. J. Nucl. Mater. 326 (2004), pp. 86–96. doi: 10.1016/j.jnucmat.2003.12.012
  • J.T. Busby, M.C. Hash and G.S. Was, The relationship between hardness and yield stress in irradiated austenitic and ferritic steels. J. Nucl. Mater. 336 (2005), pp. 267–278. doi: 10.1016/j.jnucmat.2004.09.024
  • W.-Y. Chen, X. Liu and Y. Chen, Irradiation effects in high entropy alloys and 316H stainless steel at 300°C. J. Nucl. Mater. 510 (2018), pp. 421–430. doi: 10.1016/j.jnucmat.2018.08.031
  • N.K. Kumar, C. Li and K. Leonard, Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater. 113 (2016), pp. 230–244. doi: 10.1016/j.actamat.2016.05.007
  • S. Shi, M.-R. He and K. Jin, Evolution of ion damage at 773 K in Ni- containing concentrated solid-solution alloys. J. Nucl. Mater. 510 (2018), pp. 132–142. doi: 10.1016/j.jnucmat.2018.01.015
  • C. Lu, T. Yang and K. Jin, Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys. Acta Mater. 127 (2017), pp. 98–107. doi: 10.1016/j.actamat.2017.01.019
  • R. Casati and M. Vedani, Metal matrix composites reinforced by nano-particles – a review. Metals 4 (2014), pp. 65–83. doi: 10.3390/met4010065
  • H. Kim, J. Gigax and T. Chen, Dispersoid stability in ion irradiated oxide-dispersion-strengthened alloy. J. Nucl. Mater. 509 (2018), pp. 504–512. doi: 10.1016/j.jnucmat.2018.07.015
  • J.P. Wharry, M.J. Swenson and K.H. Yano, A review of the irradiation evolution of dispersed oxide nanoparticles in the b.c.c. Fe-Cr system: current understanding and future directions. J. Nucl. Mater. 486 (2017), pp. 11–20. doi: 10.1016/j.jnucmat.2017.01.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.