208
Views
3
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Ab-initio study of the RbEuFe4As4 superconductor

, &
Pages 894-916 | Received 20 Jun 2019, Accepted 05 Dec 2019, Published online: 19 Dec 2019

References

  • A. Iyo, K. Kawashima, T. Kinjo, T. Nishio, S. Ishida, H. Fujihisa, Y. Gotoh, K. Kihou, H. Eisaki, and Y. Yoshida, New-structure-type Fe-based superconductors: CaAFe4As4 (A=K, Rb, Cs) and SrAFe4As4 (A=Rb, Cs), J. Am. Chem. Soc. 138 (2016), pp. 3410–3415 doi: 10.1021/jacs.5b12571
  • K. Kawashima, T. Kinjo, T. Nishio, S. Ishida, H. Fujihisa, Y. Gotoh, K. Kihou, H. Eisaki, Y. Yoshida, and A. Iyo, Superconductivity in Fe-Based Compound CaAFe4As4 (A=Rb and Cs), J. Phys. Soc. Jpn. 85 (2016), p. 064710. doi: 10.7566/JPSJ.85.064710
  • Y. Liu, Y.-B. Liu, H. Jiang, Z.-C. Wang, A. Ablimit, W.-H. Jiao, Q. Tao, C.-M. Feng, Z.-A. Xu, and G.-H. Cao, Superconductivity and ferromagnetism in hole-doped RbEuFe4As4, Phys. Rev. B 93 (2016), p. 214503.
  • Y. Liu, Y.-B. Liu, Q. Chen, Z.-T. Tang, W.-H. Jiao, Q. Tao, Z.-A. Xu, and G.-H. Cao, A new ferromagnetic superconductor: CsEuFe4As4, Sci. Bull. 61 (2016), pp. 1213–1220 doi: 10.1007/s11434-016-1139-2
  • W.R. Meier, T. Kong, U.S. Kaluarachchi, V. Taufor, N.H. Jo, G. Drachuck, A.E. Böhmer, S.M. Saunders, A. Sapkota, A. Kreyssig, M.A. Tanatar, R. Prozorov, A.I. Goldman, F.F. Balakirev, A. Gurevich, S.L. Bud'ko, and P.C. Canfield, Anisotropic thermodynamic and transport properties of single-crystalline CaKFe4As4, Phys. Rev. B 94 (2016), p. 064501.
  • L.N. Bulaevskii, A.I. Buzdin, M.L. Kulić, and S.V. Panjukov, Coexistence of superconductivity and magnetism theoretical predictions and experimental results, Adv. Phys. 34 (1985), pp. 175–261. doi: 10.1080/00018738500101741
  • S. Zapf and M. Dressel, Europium-based iron pnictides: A unique laboratory for magnetism, superconductivity and structural effects, Rep. Prog. Phys. 80 (2017), p. 016501. doi: 10.1088/0034-4885/80/1/016501
  • Y. Liu, Y.-B. Liu, Q. Tao, C.-M. Feng, and G.-H. Cao, RbEu(Fe1−xNix)4As4: From a ferromagnetic superconductor to a superconducting ferromagnet, Phys. Rev. B 96 (2017), p. 224510.
  • J.-K. Bao, K. Willa, M.P. Smylie, H. Chen, U. Welp, D.Y. Chung, and M.G. Kanatzidis, Single crystal growth and study of the ferromagnetic superconductor RbEuFe4As4, Cryst. Growth Des. 18 (2018), pp. 3517–3523. doi: 10.1021/acs.cgd.8b00315
  • M.P. Smylie, K. Willa, J.-K. Bao, K. Ryan, Z. Islam, H. Claus, Y. Simsek, Z. Diao, A. Rydh, A.E. Koshelev, W.-K. Kwok, D.Y. Chung, M.G. Kanatzidis, and U. Welp, Anisotropic superconductivity and magnetism in single-crystal RbEuFe4As4, Phys. Rev. B 98 (2018), p. 104503. doi: 10.1103/PhysRevB.98.104503
  • M.A. Albedah, F. Nejadsattari, Z.M. Stadnik, Y. Liu, and G.-H. Cao, Mössbauer spectroscopy measurements on the 35.5 K superconductor Rb1−δEuFe4As4, Phys. Rev. 97 (2018), p. 144426. doi: 10.1103/PhysRevB.97.144426
  • C. Xu, Q. Chen, and C. Cao, Unique crystal field splitting and multiband RKKY interactions in Ni-doped EuRbFe4As4, Commun. Phys. 2 (2019), p. 16. doi: 10.1038/s42005-019-0112-1
  • P. Blaha, K. Schwartz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Technical Universität Wien, Austria, 1999.
  • F. Nejadsattari, P. Wang, Z.M. Stadnik, Y. Nagata, and T. Ohnishi, Ab-initio, magnetic, and 155Gd Mössbauer spectroscopy study of GdRhO3, J. Alloys Compd. 725 (2017), pp. 1098–1105. doi: 10.1016/j.jallcom.2017.07.233
  • J.P. Perdew, S. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • V.I. Anisimov and O. Gunnarsson, Density-functional calculation of effective Coulomb interactions in metals, Phys. Rev. B 43 (1991), p. 7570–7574. doi: 10.1103/PhysRevB.43.7570
  • V.I. Anisimov, J. Zaanen, and O.K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B 44 (1991), p. 943–954. doi: 10.1103/PhysRevB.44.943
  • V.N. Antonov, B.N. Harmon, and A.N. Yaresko, Electronic structure of mixed-valent and charge-ordered Sm and Eu pnictides and chalcogenides, Phys. Rev. B 72 (2005), p. 085119.
  • R.F.W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, 1991.
  • P.E. Blöchl, O. Jepsen, and O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations, Phys. Rev. B 49 (1994), pp. 16223–16233. doi: 10.1103/PhysRevB.49.16223
  • A.P. Drozdov, P.P. Kong, V.S. Minkov, S.P. Besedin, M.A. Kuzovnikov, S. Mozaffari, J. Balicas, F.F. Balakirev, D.E. Graf, V.B. Prakapenka, E. Greenberg, D.A. Knyazev, M. Tkacz, and M.I. Eremets, Superconductivity at 250 K in lanthanum hydride under high pressures, Nature 569 (2019), pp. 528–531. doi: 10.1038/s41586-019-1201-8
  • Y.I. Seo, W.J. Choi, S. Kimura, and Y.S. Kwon, Evidence for a preformed Cooper pair model in the pseudogap spectra of a Ca10(Pt4As8)(Fe2As2)5 single crystal with a nodal superconducting gap, Sci. Rep. 9 (2019), p. 3987. doi: 10.1038/s41598-019-40528-3
  • A. Foley, S. Verret, A.-M.S. Tremblay, and D Sénéchal, Coexistence of superconductivity and antiferromagnetism in the Hubbard model for cuprates, Phys. Rev. B 99 (2019), p. 184510. doi: 10.1103/PhysRevB.99.184510
  • X. Shi and G. Wang, Electronic structure and magnetism of the multiband new superconductor CaRbFe4As4, J. Phys. Soc. Jpn. 85 (2016), p. 124714. doi: 10.7566/JPSJ.85.124714
  • F. Lochner, F. Ahn, T. Hickel, and I. Eremin, Electronic properties, low-energy Hamiltonian, and superconducting instabilities in CaKFe4As4, Phys. Rev. B 96 (2017), p. 094521. doi: 10.1103/PhysRevB.96.094521
  • D.V. Suetin and I.R. Shein, Electronic properties and Fermi surface for new layered high-temperature superconductors CaAFe4As4 (A=K, Rb, and Cs): FLAPW-GGA calculations, J. Supercond. Nov. Magn. 31 (2018), pp. 1683–1692. doi: 10.1007/s10948-017-4404-y
  • M. Hashimoto, I.M. Vishik, R.-H. He, and T.P. Devereaux, Energy gaps in high-transition-temperature cuprate superconductors, Nature Phys. 10 (2014), pp. 483–495. doi: 10.1038/nphys3009
  • A. Chubukov, Chubukov, Iron-based super conductivity, in Springer Series in Materials Science, P. D. Johnson, G. Xu, W.-G. Yin, eds., Berlin: Springer, 2015. pp. 255–329.
  • F. Birch, Finite elastic strain of cubic crystals, Phys. Rev. 71 (1947), pp. 809–824. doi: 10.1103/PhysRev.71.809
  • F.D. Murhanghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. 30 (1944), pp. 244–247. doi: 10.1073/pnas.30.9.244
  • N.N. Greenwood and T.C. Gibb, Mössbauer Spectroscopy, Chapman and Hall, London, 1971.
  • P. Gütlich, E. Bill, and A. Trautwein, Mössbauer Spectroscopy and Transition Metal Chemistry, Springer, Berlin, 2011.
  • P. Blaha, Calculations of Mössbauer parameters in solids by DFT bandstructure calculations, J. Phys.: Conf. Series 217 (2010), p. 012009.
  • F. Nejadsattari, Z.M. Stadnik, and J. Żukrowski, Mössbauer spectroscopy study of a new layered iron oxyselenide Na2Fe2Se2O, J. Alloys Compd. 639 (2015), pp. 547–555. doi: 10.1016/j.jallcom.2015.03.200
  • U.D. Wdowik and K. Reubenbauer, Calibration of the isomer shift for the 14.4-keV transition in 57Fe using the full-potential linearized augmented plane-wave method, Phys. Rev. B 76 (2007), p. 155118. doi: 10.1103/PhysRevB.76.155118
  • F. Nejadsattari, Z.M. Stadnik, J. Przewoźnik, and K.H.J. Buschow, Mössbauer spectroscopy, magnetic, and ab-initio study of the Heusler compound Fe2NiGa, Physica B 477 (2015), pp. 113–122. doi: 10.1016/j.physb.2015.08.027
  • G. Martínez-Pinedo, P. Schwerdtfeger, E. Caurier, K. Langanke, W. Nazarewich, and T. Söhnel, Nuclear quadrupole moment of 57Fe from microscopic nuclear and atomic calculations, Phys. Rev. Lett. 87 (2001), p. 062701. doi: 10.1103/PhysRevLett.87.062701

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.