252
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Theoretical investigation of the crystallographic structure, anisotropic elastic response, and electronic properties of the major borides in Ni-based superalloys

, , , , , & show all
Pages 998-1014 | Received 04 Aug 2019, Accepted 07 Jan 2020, Published online: 16 Jan 2020

References

  • D. Furrer, and H. Fecht, Ni-based superalloys for turbine discs, JOM 51 (1999), pp. 14–17. doi: 10.1007/s11837-999-0005-y
  • A. Bauer, S. Neumeier, F. Pyczak, R.F. Singer and M. Göken, Creep properties of different γ′-strengthened Co-base superalloys, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process 550 (2012), pp. 333–341. doi: 10.1016/j.msea.2012.04.083
  • K. Shinagawa, T. Omori, K. Oikawa, R. Kainuma, and K. Ishida, Ductility enhancement by boron addition in Co–Al–W high-temperature alloys, Scr. Mater. 61 (2009), pp. 612–615. doi: 10.1016/j.scriptamat.2009.05.037
  • W.M. Yin, and S.H. Whang, Creep in boron-doped nanocrystalline nickel, Scr. Mater. 4 (2001), pp. 569–574. doi: 10.1016/S1359-6462(00)00639-4
  • F. Zarandi, and S. Yue, The effect of boron on hot ductility of Nb-microalloyed steels, ISIJ Int. 46 (2006), pp. 591–598. doi: 10.2355/isijinternational.46.591
  • P.J. Zhou, J.J. Yu, X.F. Sun, H.R. Guan, and Z.Q. Hu, The role of boron on a conventional nickel-based superalloy, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 491 (2008), pp. 159–163. doi: 10.1016/j.msea.2008.02.019
  • H.R. Zhang, and O.A. Ojo, Cr-rich nanosize precipitates in a standard heat-treated Inconel 738 superalloy, Philos. Mag. 90 (2010), pp. 765–782. doi: 10.1080/14786430903270643
  • M. Kurban, U. Erb, and K.T. Aust, A grain boundary characterization study of boron segregation and carbide precipitation in alloy 304 austenitic stainless steel, Scr. Mater. 54 (2006), pp. 1053–1058. doi: 10.1016/j.scriptamat.2005.11.055
  • Y.N. Yeremin, and A.S. Losev, Mechanical properties and thermal stability of a maraging steel with borides, deposited with a flux-cored wire, Weld. Int. 28 (2014), pp. 465–468. doi: 10.1080/09507116.2013.840041
  • Z.L. Liu, X. Chen, Y.X. Li, and K.H. Hu, Effect of chromium on microstructure and properties of high boron white cast iron, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 39A (2008), pp. 636–641. doi: 10.1007/s11661-007-9385-1
  • M.J. Kaufman, and V.I. Levit, Characterization of chromium boride precipitates in the commercial superalloy GTD 111 after long-term exposure, Philos. Mag. Lett. 88 (2008), pp. 259–267. doi: 10.1080/09500830801905445
  • X.B. Hu, L.Z. Zhou, J.S. Hou, X.Z. Qin, and X.L. Ma, Interfacial precipitation of the M5B3-type boride in Ni-based superalloys, Philos. Mag. Lett. 96 (2016), pp. 273–279. doi: 10.1080/09500839.2016.1200756
  • X.B. Hu, Y.L. Zhu, N.C. Sheng, and X.L. Ma, The Wyckoff positional order and polyhedral intergrowth in the M3B2-and M5B3-type boride precipitated in the Ni-based superalloys, Sci. Rep. 4 (2014), pp. 1–9.
  • P. Paufler, Pearson's handbook of crystallographic data for intermetallic phases. American Society for Metals, Cryst. Res. Technol. 22 (1987), pp. 1436–1436. doi: 10.1002/crat.2170221117
  • M. Kavitha, G.S. Priyanga, R. Rajeswarapalanichamy, and K. Iyakutti, Structural stability, electronic, mechanical and superconducting properties of CrC and MoC, Mater. Chem. Phys. 169 (2016), pp. 71–81. doi: 10.1016/j.matchemphys.2015.11.031
  • D.E. Kim, S.L. Shang, and Z.K. Liu, Effects of alloying elements on elastic properties of Ni3Al by first-principles calculations, Intermetallics 18 (2010), pp. 1163–1171. doi: 10.1016/j.intermet.2010.02.024
  • X.Y. Chong, Y.H. Jiang, R. Zhou, and J. Feng, Elastic properties and electronic structures of CrxBy as superhard compounds, J. Alloy. Compd. 610 (2014), pp. 684–694. doi: 10.1016/j.jallcom.2014.05.010
  • Y.C. Liang, Z. Zhong, and W.Q. Zhang, A thermodynamic criterion for designing superhard transition-metal borides with ultimate boron content, Comput. Mater. Sci. 68 (2013), pp. 222–228. doi: 10.1016/j.commatsci.2012.10.021
  • X.B. Hu, H.Y. Niu, X.L. Ma, A.R. Oganov, C.A.J. Fisher, N.C. Sheng, J.D. Liu, T. Jin, X.F. Sun, J.F. Liu and Y. Ikuhara, Atomic-scale observation and analysis of chemical ordering in M3B2 and M5B3 borides, Acta Mater. 149 (2018), pp. 274–284. doi: 10.1016/j.actamat.2018.02.055
  • B. Xiao, J. Feng, C.T. Zhou, J.D. Xing, X.J. Xie, Y.H. Cheng, and R. Zhou, The elasticity, bond hardness and thermodynamic properties of X2B (X = Cr, Mn, Fe, Co, Ni, Mo, W) investigated by DFT theory, Physica B 405 (2010), pp. 1274–1278. doi: 10.1016/j.physb.2009.11.064
  • S.L. Shang, Y. Wang, and Z.K. Liu, First-principles elastic constants of α-and θ-Al2O3, Appl. Phys. Lett. 90 (2007), pp. 101909. doi: 10.1063/1.2711762
  • R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. Lond Sect A 65 (1952), pp. 349–354. doi: 10.1088/0370-1298/65/5/307
  • W. Kohn, and L.J. Sham, Quantum density oscillations in an inhomogeneous electron gas, Phys. Rev. 137 (1965), pp. A1697–A1705. doi: 10.1103/PhysRev.137.A1697
  • P. Hohenberg, and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (1964), pp. B864–B871. doi: 10.1103/PhysRev.136.B864
  • G. Kresse, and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996), pp. 11169–11186. doi: 10.1103/PhysRevB.54.11169
  • G. Kresse, and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1993), pp. 558–561. doi: 10.1103/PhysRevB.47.558
  • P.E. Blöchl, O. Jepsen, and O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations, Phys. Rev. B 49 (1994), pp. 16223–16233. doi: 10.1103/PhysRevB.49.16223
  • J.P. Perdew, and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45 (1992), pp. 13244–13249. doi: 10.1103/PhysRevB.45.13244
  • M. Ernzerhof, and G.E. Scuseria, Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional, J. Chem. Phys. 110 (1999), pp. 5029–5036. doi: 10.1063/1.478401
  • D.J. Chadi, Special points for Brillouin-zone integrations, Phys. Rev. B 16 (1977), pp. 1746–1747. doi: 10.1103/PhysRevB.16.1746
  • C. Kittel, Introduction to Solid State Physics, Wiley, New York, 1996.
  • X.B. Hu, Y.L. Zhu, and X.L. Ma, Crystallographic account of nano-scaled intergrowth of M2B-type borides in nickel-based superalloys, Acta Mater. 68 (2014), pp. 70–81. doi: 10.1016/j.actamat.2014.01.002
  • V.S. Telegus, and Y.B. Kuz'ma, Phase equilibria in the systems tungsten-chromium-boron and tungsten-molybdenum-boron, Powder Metall. Met. Ceram. 7 (1968), pp. 133–138. doi: 10.1007/BF00774307
  • A. Wittmann, H.N. Nowotny, and H. Boller, Ein beitrag zum dreistoff titan-molybdän-bor, Monatsh. Chem. 91 (1960), pp. 608–615. doi: 10.1007/BF00899796
  • V.I. Razumovskiy, A.V. Ruban, and P.A. Korzhavyi, First-principles study of elastic properties of Cr-and Fe-rich Fe-Cr alloys, Phys. Rev. B 84 (2011), pp. 024106. doi: 10.1103/PhysRevB.84.024106
  • F.H. Featherston, and J.R. Neighbours, Elastic constants of tantalum, tungsten, and molybdenum, Phys. Rev. 130 (1963), pp. 1324–1333. doi: 10.1103/PhysRev.130.1324
  • D.I. Bolef, and J. de Klerk, Elastic constants of single – crystal Mo and W between 77 and 500 K, J. Appl. Phys. 33 (1962), pp. 2311–2314. doi: 10.1063/1.1728952
  • Y.Z. Liu, H.G. Fu, W. Li, J.D. Xing, Y.F. Li, and B.C. Zheng, Mechanical properties and chemical bonding of M2B and M2B0.75C0.25 (M = Fe, Cr, W, Mo, Mn) compounds, J. Mater. Res. 33 (2018), pp. 3665–3676. doi: 10.1557/jmr.2018.207
  • M. Born, and K. Huang, Theory of Crystal Lattices, Clarendon, Oxford, 1956.
  • Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, and J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B 76 (2007), pp. 054115. doi: 10.1103/PhysRevB.76.054115
  • S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Phil. Mag. 45 (1954), pp. 823–843. doi: 10.1080/14786440808520496
  • Z.J. Wu, X.F. Hao, X.J. Liu, and J. Meng, Structures and elastic properties of Os N 2 investigated via first-principles density functional calculations, Phys. Rev. B 75 (2007), pp. 054115. doi: 10.1103/PhysRevB.75.054115
  • X.Q. Chen, H.Y. Niu, D.Z. Li, and Y.Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics 19 (2011), pp. 1275–1281. doi: 10.1016/j.intermet.2011.03.026
  • V. Tvergaard, and J.W. Hutchinson, Microcracking in ceramics induced by thermal expansion or elastic anisotropy, J. Am. Ceram. Soc. 71 (1988), pp. 157–166. doi: 10.1111/j.1151-2916.1988.tb05022.x
  • S.I. Ranganathan, and M. Ostoja-Starzewski, Universal elastic anisotropy index, Phys. Rev. Lett. 101 (2008), pp. 055504. doi: 10.1103/PhysRevLett.101.055504
  • T.L. Achmad, W.X. Fu, H. Chen, C. Zhang, and Z.G. Yang, Effects of alloying elements concentrations and temperatures on the stacking fault energies of Co-based alloys by computational thermodynamic approach and first-principles calculations, J. Alloy. Compd. 694 (2017), pp. 1265–1279. doi: 10.1016/j.jallcom.2016.10.113
  • J. Nylén, G.F.J. Garcı`a, B.D. Mosel, R. Pöttgen, and U. Häussermann, Structural relationships, phase stability and bonding of compounds PdSnn (n = 2, 3, 4), Solid State Sci. 6 (2004), pp. 147–155. doi: 10.1016/j.solidstatesciences.2003.09.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.