511
Views
2
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

First-principles calculations of the monoclinic transition-metal doped NaMnO2 cathode material

Pages 917-926 | Received 09 Jul 2019, Accepted 03 Jan 2020, Published online: 16 Jan 2020

References

  • Z. Zhang, D. Wu, X. Zhang, X. Zhao, H. Zhang, F. Ding, Z. Xie, and Z. Zhou, First-principles computational studies on layered Na2Mn3O7 as a high-rate cathode material for sodium ion batteries. J. Mater. Chem. A 5 (2017), pp. 12752–12756. doi: 10.1039/C7TA02609A
  • H. Tang, M. Wang, T. Lu, and L. Pan, Porous carbon spheres as anode materials for sodium - ion batteries with high capacity and long cycling life. Ceram. Int. 43 (2017), pp. 4475–4482. doi: 10.1016/j.ceramint.2016.12.098
  • W. Fang, L. Fan, Y. Zhang, Q. Zhang, Y. Yin, N. Zhang, and K. Sun, Synthesis of carbon coated Bi2O3 nanocomposite anode for sodium-ion batteries. Ceram. Int. 43 (2017), pp. 8819–8823. doi: 10.1016/j.ceramint.2017.04.014
  • R. Kataoka, M. Kitta, H. Ozaki, N. Takeichi, and T. Kiyobayashi, Spinel manganese oxide: A high capacity positive electrode material for the sodium ion battery. Electrochmica. Acta. 212 (2016), pp. 458–464. doi: 10.1016/j.electacta.2016.07.038
  • G.R. Zhang, L.J. Zou, Z. Zeng, and H.Q. Lin, Magnetic and electronic properties of α-NaMnO2. J. Appl. Phys. 105 (2009), pp. 07E512–07E514. doi: 10.1063/1.3074783
  • X. Ma, H. Chen, and G. Ceder, Electrochemical properties of monoclinic NaMnO2. J. Electrochem. Soc. 158(12) (2011), pp. A1307–A1312. doi: 10.1149/2.035112jes
  • I.H. Jo, H.S. Ryu, D.G. Gu, J.S. Park, I.S. Ahn, H.J. Ahn, T.H. Nam, and K.W. Kim, The effect of electrolyte on the electrochemical properties of Na/α-NaMnO2 batteries. Mater. Res. Bull. 58 (2014), pp. 74–77. doi: 10.1016/j.materresbull.2014.02.024
  • J. Billaud, R.J. Clément, A.R. Armstrong, J. Canales-Vázquez, P. Rozier, C.P. Grey, and P.G. Bruce, β-NaMnO2: A High-performance cathode for sodium-Ion batteries. J. Am. Chem. Soc. 136(49) (2014), pp. 17243–17248. doi: 10.1021/ja509704t
  • K. Kubota, M. Miyazaki, and S. Komaba, Structural and electrochemical Studies on NaMnO2 for Na-Ion batteries. MA2015-02 3 (2015), pp. 228.
  • M. Tian, Y. Gao, Z. Wang, and L. Chena, Understanding structural stability of monoclinic LiMnO2 and NaMnO2 upon de-intercalation. Phys. Chem. Chem. Phys. 18 (2016), pp. 17345–17350. doi: 10.1039/C6CP02019D
  • R. Zhang, Z. Lu, Y. Yang, and W. Shi, First-principles investigation of the monoclinic NaMnO2 cathode material for rechargeable Na-ion batteries. Curr. Appl. Phys. 18(11) (2018), pp. 1431–1435. doi: 10.1016/j.cap.2018.08.011
  • L. Zheng, Z. Wang, M. Wu, B. Xu, and C. Ouyang, Jahn–teller type small polaron assisted Na diffusion in NaMnO2 as a cathode material for Na-ion batteries. J. Mater. Chem. A 7 (2019), pp. 6053–6061. doi: 10.1039/C8TA11955D
  • G.X. Wang, L. Yang, S.L. Bewlay, Y. Chen, H.K. Liu, and J.H. Ahn, Electrochemical properties of carbon coated LiFePO4 cathode materials. J. Power Sources 146 (2005), pp. 521–524. doi: 10.1016/j.jpowsour.2005.03.201
  • K.S. Park, J.T. Son, H.T. Chung, S.J. Kim, C.H. Lee, K.T. Kang, and H.G. Kim, Surface modification by silver coating for improving electrochemical properties of LiFePO4. Solid State Commun. 129 (2004), pp. 311–314. doi: 10.1016/j.ssc.2003.10.015
  • K.S. Park, S.B. Schougaard, and J.B. Goodenough, Conducting-polymer/iron-redox-couple Composite Cathodes for lithium Secondary batteries. Adv. Mater. 19 (2007), pp. 848–851. doi: 10.1002/adma.200600369
  • M. Gaberscek, R. Dominko, and J. Jamnik, Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes. Electrochem. Commun. 9 (2007), pp. 2778–2783. doi: 10.1016/j.elecom.2007.09.020
  • S.Y. Chung, J.T. Bloking, and Y.M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 1 (2002), pp. 123–128. doi: 10.1038/nmat732
  • O.I. Velikokhatnyi, D. Choi, and P.N. Kumta, Effect of boron on the stability of monoclinic NaMnO2: Theoretical and experimental studies. Mater. Sci. Eng., B 128 (2006), pp. 115–124. doi: 10.1016/j.mseb.2005.11.025
  • J. Su, Y. Pei, Z. Yang, and X. Wang, First-principles investigation on crystal, electronic structures and diffusion barriers of NaNi1/3Co1/3Mn1/3O2 for advanced rechargeable Na-ion batteries. Comput. Mater. Sci. 98 (2015), pp. 304–310. doi: 10.1016/j.commatsci.2014.11.021
  • D. Buchholz, C. Vaalma, L.G. Chagas, and S. Passerini, Mg-doping for improved long-term cyclability of layered Na-ion cathode materials - The example of P2-type NaxMg0.11Mn0.89O2. J. Power Sources 282 (2015), pp. 581–585. doi: 10.1016/j.jpowsour.2015.02.069
  • X. Sun, X.Y. Ji, H.Y. Xu, C.Y. Zhang, Y. Shao, Y. Zang, and C.H. Chen, Sodium insertion cathode material Na0.67[Ni0.4Co0.2Mn0.4]O2 with excellent electrochemical properties. Electrochim. Acta 208 (2016), pp. 142–147. doi: 10.1016/j.electacta.2016.04.067
  • H. Xu, J. Zong, S. Chen, F. Ding, Z.W. Lu, and X.J. Liu, Synthesis and evaluation of NaNi0.5Co0.2Mn0.3O2 as a cathode material for Na-ion battery. Ceram. Int. 42(10) (2016), pp. 12521–12524. doi: 10.1016/j.ceramint.2016.04.141
  • R. Clément, J. Billaud, R. Armstrong, G. Singh, T. Rojo, P.G. Bruce, and C.P. Grey, Structurally stable Mg-doped P2-Na2/3Mn1-yMgyO2 sodium-ion battery cathodes with high rate performance: insights from electrochemical, NMR and diffraction studies. Energy Environ. Sci. 9 (2016), pp. 3240–3251. doi: 10.1039/C6EE01750A
  • L.W. Jian, Y.X. Lu, Y.S. Wang, L.L. Liu, X.G. Qi, C.L. Zhao, L.Q. Chen, and Y.S. Hu, A High-Temperature β-Phase NaMnO2 Stabilized by Cu doping and Its Na storage properties. Chin. Phys. Lett. 35(4) (2018), pp. 048801–048804. doi: 10.1088/0256-307X/35/4/048801
  • C. Ferrara, C. Tealdi, V. Dall’Asta, D. Buchholz, L.G. Chagas, E. Quartarone, V. Berbenni, and S. Passerini, High-Performance Na0.44MnO2 Slabs for sodium-Ion batteries obtained through urea-based solution combustion synthesis. Batteries 4 (2018), pp. 8–17. doi: 10.3390/batteries4010008
  • D. Wang, H. Li, S. Shi, X. Huang, and L. Chen, Improving the rate performance of LiFePO4 by Fe-site doping. Electrochim. Acta 50 (2005), pp. 2955–2958. doi: 10.1016/j.electacta.2004.11.045
  • H. Liu, C. Li, Q. Cao, Y. Wu, and R. Holze, Effects of heteroatoms on doped LiFePO4/C composites. J. Solid State Electrochem. 12 (2008), pp. 1017–1020. doi: 10.1007/s10008-007-0480-4
  • X. Ou, G. Liang, L. Wang, S. Xu, and X. Zhao, Effects of magnesium doping on electronic conductivity and electrochemical properties of LiFePO4 prepared via hydrothermal route. J. Power Sources 184 (2008), pp. 543–547. doi: 10.1016/j.jpowsour.2008.02.077
  • N. Meethong, Y.H. Kao, S.A. Speakman, and Y.M. Chiang, Aliovalent Substitutions in Olivine lithium Iron Phosphate and Impact on structure and properties. Adv. Funct. Mater. 19 (2009), pp. 1060–1070. doi: 10.1002/adfm.200801617
  • H. Lin, Y. Wen, C. Zhang, L. Zhang, Y. Huang, B. Shan, and R. Chen, A GGA+U study of lithium diffusion in vanadium doped LiFePO4. Solid State Commun. 152 (2012), pp. 999–1003. doi: 10.1016/j.ssc.2012.03.027
  • J.P. Perdew, K. Ernzerhof, and M. Burke, Generalized gradient approximation Made Simple. Phys. Rev. Lett. 77(18) (1996), pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, and M.C. Payne, First principles methods using CASTEP. Zeitschrift für Kristallographie 220(5-6) (2005), pp. 567–570.
  • M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter. 14(11) (2002), pp. 2717–2744.
  • J.-P. Parant, R. Olazcuaga, M. Devalette, C. Fouassier, and P. Hagenmuller, Sur quelques nouvelles phases de formule NaxMnO2 (x < 1). J. Solid State Chem. 3 (1971), pp. 1–11. doi: 10.1016/0022-4596(71)90001-6
  • C.G. Broyden, The convergence of a class of double-rank minimization algorithms. J. Inst. Math. Appl. 6 (1970), pp. 76–90. doi: 10.1093/imamat/6.1.76
  • R. Fletcher, A New approach to Variable Metric Algorithms. Computer J. 13 (1970), pp. 317–322. doi: 10.1093/comjnl/13.3.317
  • D. Goldfarb, A Family of Variable Metric Updates Derived by Variational Means. Math. Comput. 24 (1970), pp. 23–26. doi: 10.1090/S0025-5718-1970-0258249-6
  • D.F. Shanno, Conditioning of quasi-Newton methods for function minimization. Math. Comput. 24 (1970), pp. 647–656. doi: 10.1090/S0025-5718-1970-0274029-X
  • Z. Xu, Y. Li, C. Li, and Z. Liu, Structural, electronic and optical properties of B, N and Ni-doped zinc-blende GeC by first-principles calculation. J. Alloys Compd. 687 (2016), pp. 168–173. doi: 10.1016/j.jallcom.2016.06.115

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.