311
Views
5
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

First-principles investigation of the structural, dynamical, electronic, and elastic properties of WGe2 and W5Ge3

ORCID Icon, & ORCID Icon
Pages 1129-1149 | Received 13 May 2019, Accepted 03 Jan 2020, Published online: 27 Jan 2020

References

  • F. Yuan, S. Forbes, K.K. Ramachandran and Y. Mozharivskyj, Structure and physical properties of Cr5B3- type Ta5Si3 and Ta5Ge3, J. Alloys Compd. 650 (2015), pp. 712–717. doi: 10.1016/j.jallcom.2015.08.030
  • S.V. Popova and L.N. Fomicheva, High-pressure science and technology, 6th AIRAPT Confi, Boulder, CO, July 25–29, Vol. 1, Plenum, New York, 1977, p. 272.
  • S.V. Popova. Instute oc crystallography, DSc. Thesis, Academy of Sciences of the USSR, Moscow, 1982.
  • V.M. Agoshkov, V.D. Gorbatenkov, S.V. Popova and L.N. Fomicheva, Crystallzitaion of MoGe2 and WGe2 at high pressure and some properties of these phases, J. Less-Common Met. 78 (1981), pp. 235–243. doi: 10.1016/0022-5088(81)90133-8
  • S.V. Popova and L.N. Fomicheva, Synthesis of tungsten germanides at high pressure, Izv. Acad. Nauk SSSR Neorg. Mater. 14 (1978), pp. 684–686.
  • O.Y. Khyzhun, Y.V. Zaulychny and E.A. Zhurakovsky, Electronic structure of tungsten and molybdenum germanides synthesized at high pressures, J. Alloys Compd. 244 (1996), pp. 107–112. doi: 10.1016/S0925-8388(96)02412-7
  • M. Barbier-Andrieux, Recherches sur la préparation par électrolyse ignée du germanium et de quelques-uns de ses alliages binaires avec les métaux de transition: 1ère thèse, Ann. Chim. 10 (1955), pp. 790.
  • M. Barbier-Andrieux, Preparation of germanium and of some of its binary compounds with transition metals by high-temperature electrolysis, Bull. Sot. Fr. Electr. 6 (1956), pp. 670.
  • G.F. Hardy and J.K. Hulm, Superconducting silicides and germanides, Phys. Rew. 89(4) (1953), pp. 884. doi: 10.1103/PhysRev.89.884
  • G.F. Hardy and J.K. Hulm, The superconductivity of some transition metal compounds, Phys. Rev. 93(5) (1954), pp. 1004–1016. doi: 10.1103/PhysRev.93.1004
  • L.H. Brixner, X-ray study and thermoelectricic properties of the NbSixGe2-x and TaSixGe2-x sytems, J.Inorg.Nucl.Chem. 25 (1963), pp. 257–260. doi: 10.1016/0022-1902(63)80051-2
  • S.V. Popova, New gallides and germanides of transition metals. Physica Scripta 1982(T1) (1982), pp. 131–133. doi: 10.1088/0031-8949/1982/T1/041
  • V.M. Agoshkov, V.D. Gorbatenkov, S.V. Popova and L.N. Fomicheva, Conditions of formation and certain properties of MoGe2 and WGe2 phases, obtained under high pressure, Izv. Acad. Nauk. SSSR, Neorg. Mater. 17 (1981), pp. 2044–2047.
  • Y.V. Zaulichnyj, O.Y. Khizhun, E.A. Zhurakovskij and V.D. Dobrovol`skij, X-ray spectroscopy in electronic structure studies of tungsten digermanides synthesized under high pressure, Metallofizika. 12 (1990), pp. 33–38.
  • G. Kresse and J. Hafner, Ab initio molecular dynamics of lquid metals, Phys. Rev. B. 47 (1993), pp. 558–561. doi: 10.1103/PhysRevB.47.558
  • G. Kresse and J. Furthmuller, Efficiency of ab-inito total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996), pp. 15–50. doi: 10.1016/0927-0256(96)00008-0
  • G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using plane-wave basis set, Phys. Rev. B. 54 (1996), pp. 11169–11186. doi: 10.1103/PhysRevB.54.11169
  • J.P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13 (1976), pp. 5188–5192. doi: 10.1103/PhysRevB.13.5188
  • S. Baroni, S. de Gironcoli, A.D. Corso and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73 (2001), pp. 515–562. doi: 10.1103/RevModPhys.73.515
  • A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition beyween rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev.B. 78 (2008), p. 134106. doi: 10.1103/PhysRevB.78.134106
  • W. Li, J. Carrete, G.K.H. Madsen and N. Mingo, Influence of the optical-acoustic phonon hybridization on phonon scattering and thermal conductivity, Phys. Rev. B. 93 (2016), pp. 205203. doi: 10.1103/PhysRevB.93.205203
  • D. Jiang, Y. Ye, H. Liu, Q. Gou, D. Wu, Y. Wen and L. Liu, First-principles calculations of electronic, acoustic and anharmonic properties of Mn2RuZ(Z = Si and Ge) Heusler compounds, J. Magn. Mater. 458 (2018), pp. 268–276. doi: 10.1016/j.jmmm.2018.03.037
  • P. Vaqueiro, R.A.R. Al Orabi, S.D.N. Luu, G. Guelou, A.V. Powell, R.I. Smith, J.-P. Song, D. Wee and M. Fornari, The role of copper in the thermal conductivity of thermoelectric oxychalcogenides: Do Lone Pairs Matter? Phys. Chem. Chem. Phys. 17 (2015), pp. 31735–31740. doi: 10.1039/C5CP06192J
  • J.O. Sofo and G.D. Mahan, Optiumum band gap of a thermoelectric material, Phys. Rev. B. 49 (1994), pp. 4565–4570. doi: 10.1103/PhysRevB.49.4565
  • H.B. Ozisik, H. Ozisik and E. Deligoz, A new quaternary semiconductor compounds (Ba2Sb4GeS10): Ab initio study, Philos. Mag. 97 (2017), pp. 549–560. doi: 10.1080/14786435.2016.1269967
  • O.H. Nielsen and R.M. Martin, First-principles calculation of stress, Phys. Rev. Lett. 50 (1983), pp. 697–700. doi: 10.1103/PhysRevLett.50.697
  • M.J. Mehl, Pressure dependence of the elastic moduli in aluminum-rich Al-Li compounds, Phys. Rev. B. 47 (1993), pp. 2493–2500. doi: 10.1103/PhysRevB.47.2493
  • L. Page and P. Saxe, Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress, Phys. Rev. B. 65 (2002), pp. 104104. doi: 10.1103/PhysRevB.65.104104
  • F. Mouhat and F.X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys.Rev. B. 90 (2014), pp. 224104. doi: 10.1103/PhysRevB.90.224104
  • H. Ozisik, E. Deligoz, K. Colakoglu and E. Ateser, The first principles studies of the MgB7 compound: hard material, Intermetallics 39 (2013), pp. 84–88. doi: 10.1016/j.intermet.2013.03.016
  • R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. Sect. A. 65 (1952), pp. 349. doi: 10.1088/0370-1298/65/5/307
  • G.E. Dieter, Mechanical Metallurgy, SI metric ed., McGraw-Hill, Singapore, 1988.
  • V. Kanchana, Mechanical properties of Ti3AlX (X=C, N: Ab initio study, Lett. J. Explor. Front. Phys. 87 (2009), pp. 26006.
  • S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45 (1954), pp. 823–843. doi: 10.1080/14786440808520496
  • J.Y. Wang, Y.C. Zhou and Z.J. Lin, Mechanical properties and atomistic deformation mechanism of –Y2Si2O7 from first-principles investigations, Acta. Mater. 55 (2007), pp. 6019–6026. doi: 10.1016/j.actamat.2007.07.010
  • H. Dong, C. Chen, S. Wang, W. Duan and J. Li, Elastic properties of tetragonal BiFeO3 from first-principles calculations, App. Phys. Lett. 102 (2013), pp. 182905. doi: 10.1063/1.4804641
  • E. Deligoz, H. Ozisik and H.B. Ozisik, Calculation of the stability and mechanical and phonon properties of NbRuB, TaRuB, and NbOsB compounds, Phılos. Mag. 99(3) (2018), pp. 328–346. doi: 10.1080/14786435.2018.1539564
  • V.V. Bannikov, I.R. Shein and A.L. Ivanovskii, Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN3, Phs. Status Solidi(RRL)-Rapid Res. Lett. 1 (2007), pp. 89–91. doi: 10.1002/pssr.200600116
  • H. Han, Density-functional theory study of the effect of pressure on the elastic properties of CaB6. Chin. Phys. B. 22 (2013), p. 077101. doi: 10.1088/1674-1056/22/7/077101
  • I.D. Johnston, G. Keeler, R. Rollins and S. Spicklemire, Solid State Physics Simulations. The Consortium for Upper-Level Physics Software, John Wiley, New York, 1996.
  • E. Scheriber, O. Anderson and N. Soga, Elastic Constants and their Measurement, Mcgraw-Hill Companies, New York, 1974.
  • O.L. Anderson, A simplified method for calculating the Debye temperature from elastic constants, J. Phys. Chem. Solids 24 (1963), pp. 909–917. doi: 10.1016/0022-3697(63)90067-2
  • A.H. Awad and S.N. Shargi, Role of The Debye temperature in the lattice thermal conductivity of silicon, J. Therm. Anal. 37 (1991), pp. 277–284. doi: 10.1007/BF02055930
  • M. Sun, Y. Sui, K. Gao, C. Tan, L. Dai, G. Zhou, Y. Zhang and L. Wang, Theoretical analysis of thermal and mechanical properties of Eu2Hf2O7 and Gd2Hf2O7 pyrochlores, J. Ceram. Soc. oj Japan 10 (2019), pp. 722–727. doi: 10.2109/jcersj2.19101
  • N. Miao, B. Sa, J. Zhou and Z. Sun, Theoretical investigation on the transition-metal borides with Ta3B4-type structure: A class of hard and refractory materials, Comput. Mater. Sci. 50 (2011), pp. 1559–1566. doi: 10.1016/j.commatsci.2010.12.015
  • P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills and O. Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2, J. Appl. Phys. 84 (1998), pp. 4891–4904. doi: 10.1063/1.368733
  • D.H. Chung and W.R. Buessem, The elastic anisotropy of crystals, J.App. Phs. 38 (1967), pp. 2010–2012. doi: 10.1063/1.1709819
  • S.I. Ranganathan and M. Ostoja-Starzewski, Universal elastic anisotropy index, Phys. Rev. Lett. 101 (2008), pp. 055504. doi: 10.1103/PhysRevLett.101.055504
  • R. Gaillac, P. Pullumbi and F.-X. Coudert, ELATE: An open-source online application for analysis and visualization of elastic tensors, J. Phys. Condens. Matter 28 (2016), pp. 275201. doi: 10.1088/0953-8984/28/27/275201
  • C. Kaderoglu, G. Surucu and A. Erkisi, The investigation of electronic, elastic and vibrational properties of an interlanthanide perovskite: PrYbO3, J. Electron. Mater. 46 (2017), pp. 5827–5836. doi: 10.1007/s11664-017-5600-z
  • E. Deligoz, U.F. Ozyar, and H.B. Ozisik, Theoretical investigations on vibrational properties and thermal conductivities of ternary antimonides TiXSb, ZrXSb and HfXSb (X = Si, Ge). Philos. Mag. 96 (2016), pp. 1712–1713. doi: 10.1080/14786435.2016.1177226
  • D.R. Clarke, Materials selection guidelines for low thermal conductivity thermal barrier coatings, Surf. Coat. Technol. 163–164 (2003), pp. 67–74. doi: 10.1016/S0257-8972(02)00593-5
  • D.R. Clarke and C.G. Levi, Materials design for the next generation thermal barrier coatings, Annu. Rev. Mater. Res. 33 (2003), pp. 383–417. doi: 10.1146/annurev.matsci.33.011403.113718
  • D.G. Cahill, S.K. Watson and R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B. 46 (1992), pp. 6131–6140. doi: 10.1103/PhysRevB.46.6131
  • J.P. Long, C. Shu, L. Yang and M. Yang, Predicting crystal structures and physical properties of novel superhard p-BN under pressure via first-principles investigation, J. Alloy. Comp. 644 (2015), pp. 638–644. doi: 10.1016/j.jallcom.2015.04.229

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.