455
Views
12
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Predictions on structural, electronic, optical and thermal properties of lithium niobate via first-principle computations

, , , , , , , , , , & show all
Pages 1150-1171 | Received 27 May 2019, Accepted 09 Jan 2020, Published online: 14 Feb 2020

References

  • A. Rauber, Chemistry and physics of lithium niobate, Curr. Top. Mater. Sci 1 (1978), pp. 481–601.
  • H. Boysen and F. Altorfer, A neutron powder investigation of the high-temperature structure and phase transition in LiNbO3, Acta Crystallogr. B 50 (1994), pp. 405–414. doi: 10.1107/S0108768193012820
  • R.S. Weis and T.K. Gaylord, Lithium niobate: Summary of physical properties and crystal structure, Appl. Phys. A: Solids Surf 37 (1985), pp. 191–203. doi: 10.1007/BF00614817
  • U. Schlarb and K. Betzler, Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit, Phys. Rev. B 48 (1993), pp. 15613–15619. doi: 10.1103/PhysRevB.48.15613
  • I.V. Kityk, M. Makowska-Janusik, M.D. Fontana, M. Aillerie and A. Abdi, Influence of non-stoichiometric defects on optical properties in LiNbO3, Cryst. Res. Technol 36 (2001), pp. 577–588. doi: 10.1002/1521-4079(200107)36:6<577::AID-CRAT577>3.0.CO;2-3
  • I.V. Kityk, M. Makowska-Janusik, M.D. Fontana, M. Aillerie and F. Abdi, Band structure treatment of the influence of nonstoichiometric defects on optical properties in LiNbO3, J. Appl. Phys 90 (2001), pp. 5542–5549. doi: 10.1063/1.1413942
  • M.S. McPherson, I. Ostrovskii and M.A. Breazeale, Observation of acoustical memory in LiNbO3, Phys. Rev. Lett 89 (2002), 115506-1–115506-8. doi: 10.1103/PhysRevLett.89.115506
  • G. Malovichko, V. Grachev and O. Schirmer, Interrelation of intrinsic and extrinsic defects – Congruent, stoichiometric, and regularly ordered lithium niobate, Appl. Phys. B 68 (1999), pp. 785–793. doi: 10.1007/s003400050705
  • F. Abdi, M. Aillerie, P. Bourson, M.D. Fontana and K. Polgar, Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition, J. Appl. Phys 84 (1998), pp. 2251–2254. doi: 10.1063/1.368290
  • U. Schlarb and K. Betzler, Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate, Phys. Rev. B 50 (1994), pp. 751–757. doi: 10.1103/PhysRevB.50.751
  • D. Redfield and W.J. Burke, Optical absorption edge of LiNbO3, J. Appl. Phys. 45 (1974), pp. 4566–4571. doi: 10.1063/1.1663089
  • S. Kase and K. Ohi, Optical absorption and interband Faraday rotation in LiTaO3 and LiNbO3, Ferroelectrics 8 (1974), pp. 419–420. doi: 10.1080/00150197408234114
  • A. Dhar and A. Mansingh, Optical properties of reduced lithium niobate single crystals, J. Appl. Phys. 68 (1990), pp. 5804–5809. doi: 10.1063/1.346951
  • Z. Jiangou, Z. Shipin, X. Dingquan, W. Xiu and X. Guanfeng, Optical absorption properties of doped lithium niobate crystals, J. Phys.: Condens. Matter 4 (1992), pp. 2977–2985.
  • M. Wiegel, M. Emond, E. Stobbe and G. Blasse, Luminescence of alkali tantalates and niobates, J. Phys. Chem. Solids 55 (1994), pp. 773–778. doi: 10.1016/0022-3697(94)90030-2
  • P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. B 136 (1964), pp. B864–B871. doi: 10.1103/PhysRev.136.B864
  • I. Inbar and R.E. Cohen, Comparison of the electronic structures and energetics of ferroelectric LiNbO3 and LiTaO3, Phys. Rev. B 53, (1996), pp. 1193–1204. doi: 10.1103/PhysRevB.53.1193
  • S. Kohiki, M. Arai, H. Yoshikawa and S. Fukushima, Electron-energy-loss function of LiTaO3 and LiNbO3 by x-ray photoemission spectroscopy: Theory and experiment, Phys. Rev. B 57 (1998), pp. 14572–14575. doi: 10.1103/PhysRevB.57.14572
  • V. Caciuc, A.V. Postnikov and G. Borstel, Ab initio structure and zone-center phonons in LiNbO3, Phys. Rev. B 61 (2000), pp. 8806–8813. doi: 10.1103/PhysRevB.61.8806
  • M. Veithen and P. Ghosez, First-principles study of the dielectric and dynamical properties of lithium niobate, Phys. Rev. B 65 (2002), pp. 214302-1–214302-12. doi: 10.1103/PhysRevB.65.214302
  • K. Parlinski, Z.Q. Li and Y. Kawazoe, Ab-initio calculations of phonons in LiNbO3, Phys. Rev. B 61 (2000), pp. 272–278. doi: 10.1103/PhysRevB.61.272
  • W.G. Schmidt, M. Albrecht, S. Wippermann, S. Blankenburg and E. Rauls, LiNbO3 ground- and excited-state properties from first-principles calculations, Phys. Rev. B 77 (2008), pp. 035106-1–035106-6.
  • S. Cabuk, First-principles study of the electronic, linear, and nonlinear optical properties of Li(Nb, Ta)O3, Int. J. Mod Phys B 24 (2010), pp. 6277–6290. doi: 10.1142/S0217979210054415
  • S. Cabuk, The nonlinear optical susceptibility and electro-optic tensor of ferroelectrics: First-principle study, Cent. Eur. J. Phys 10 (2012), pp. 239–252.
  • S.R. Phillpot and V. Gopalan, Coupled displacive and order–disorder dynamics in LiNbO3 by molecular-dynamics simulation, Appl. Phys. Lett. 84 (2004), pp. 1916–1918. doi: 10.1063/1.1669063
  • W.Y. Ching, Z.-Q. Gu and Y.-N. Xu, First-principles calculation of the electronic and optical properties of LiNbO3, Phys. Rev. B 50 (1994), pp. 1992–1995. doi: 10.1103/PhysRevB.50.1992
  • C. Thierfelder, S. Sanna, A. Schindlmayr and W.G. Schmidt, Do we know the band gap of lithium niobate?, Phys. Status Solidi C 7 (2010), pp.362–365. doi:10.1002/pssc.200982473.
  • M. Fox, Optical Properties of Solids, Oxford university press, 2011.
  • M.S. Hybertsen and S.G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Phys. Rev. B 34 (1986), pp. 5390–5413. doi: 10.1103/PhysRevB.34.5390
  • S. Mamoun, A.E. Merad and L. Guilbert, Energy band gap and optical properties of lithium niobate from ab initio calculations, Comput. Mater. Sci. 79 (2013), pp. 125–131. doi: 10.1016/j.commatsci.2013.06.017
  • A. Riefer, M. Friedrich, S. Sanna, U. Gerstmann, A. Schindlmayr and W.G. Schmidt, LiNbO3 electronic structure: Many-body interactions, spin-orbit coupling, and thermal effects, Phys. Rev. B 93 (2016), pp. 075205-1–075205-10. doi: 10.1103/PhysRevB.93.075205
  • F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semi-local exchange-correlation potential, Phys. Rev. Lett. 102 (2009), pp. 226401–226405. doi: 10.1103/PhysRevLett.102.226401
  • A.D. Becke and E.R. Johnson, A simple effective potential for exchange, J. Chem. Phys 124 (2006), pp. 221101-1–221101-4.
  • P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k: An Augmented Plane Wave. Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Vienna, 2001.
  • W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. A 140 (1965), pp. A1133–A1138. doi: 10.1103/PhysRev.140.A1133
  • J.P. Perdew, K. Burke and M. Ernzerlof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976), pp. 5188–5192. doi: 10.1103/PhysRevB.13.5188
  • S.C. Abrahams, J.M. Reddy and J.L. Bernstein, Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24°C, J. Phys. Chem. Solids 27 (1966), pp. 997–1012. doi: 10.1016/0022-3697(66)90072-2
  • S.C. Abrahams, W.C. Hamilton and J.M. Reddy, Ferroelectric lithium niobate. 4. Single crystal neutron diffraction study at 24°C, J. Phys. Chem. Solids 27 (1966), pp. 1013–1018. doi: 10.1016/0022-3697(66)90073-4
  • S.C. Abrahams, W.C. Hamilton and J.M. Reddy, Ferroelectric lithium niobate. 5. Polycrystal X-ray diffraction study between 24° and 1200°C, J. Phys. Chem. Solids 27 (1966), pp. 1019–1026. doi: 10.1016/0022-3697(66)90074-6
  • F.D. Murnaghan, Compressibility of media under extreme pressure, Proc. Natl. Acad. Sci. USA 30 (1947), pp. 244–247. doi: 10.1073/pnas.30.9.244
  • J.R. Macdonald and D.R. Powell, Discrimination between equations of state, J. Res. Natl. Bur. Stand. A 75 (1971), pp. 441–453. doi: 10.6028/jres.075A.035
  • Qing Peng and R. E. Cohen. Origin of pyroelectricity in LiNbO3, Cond-Mat. Mtrl-Sci. 1011V 1, 4335 (2010), pp. 1–4.
  • B. Amrani, H. Achour, S. Louhibi, A. Tebboune and N. Sekkal, First principles study of AlBi, Solid State Commun. 148 (2008), pp. 59–62. doi: 10.1016/j.ssc.2008.07.016
  • H.A. Rahnamaye Aliabad and I. Ahmad, Optoelectronic properties of LixAxNbO3 (A = Na, K, Rb, Cs, Fr) crystals, Physica B 407 (2012), pp. 368–377. doi: 10.1016/j.physb.2011.11.001
  • M. J. Weber (ed.), Handbook of Optical Materials, CRC Press, Boca Raton, 2003.
  • J. Sun, H.T. Wang, N.B. Ming, J. He and Y. Tian, Optical properties of heterodiamond B2CN using first-principles calculations, Appl. Phys. Lett. 84 (2004), pp. 4544–4546. doi: 10.1063/1.1758781
  • H.Z. Tributsch, Some energetical, kinetical and catalytical considerations verified on MoS2layer crystal surfaces, Naturforschung A. 32a (1977), pp. 972–985.
  • R. Ahuja, S. Auluck, B. Johansson and M.A. Kan, Optical properties of PdO and PtO, Phys. Rev. B 50 (1994), pp. 2128–2132. doi: 10.1103/PhysRevB.50.2128
  • M. Fox, Optical Properties of Solids, Oxford University Press, New York, 2001, p. 6.
  • S. Saha and T.P. Sinha, Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3, Phys. Rev. B 62 (2000), pp. 8828–8834. doi: 10.1103/PhysRevB.62.8828
  • M.Q. Cai, Z. Yin and M.S. Zhang, First-principles study of optical properties of barium titanate, Appl. Phys. Lett. 83 (2003), pp. 2805–2807. doi: 10.1063/1.1616631
  • D.H. Jundt, M.M. Fejer and R.L. Byer, Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration, IEEE J. of Quant. Electronics 26 (1990), pp. 135–138. doi: 10.1109/3.44926
  • D. Penn, Wave-number-dependent dielectric function of semiconductors, Phys. Rev. 128 (1962), pp. 2093–2097. doi: 10.1103/PhysRev.128.2093
  • S. Mamoun, Doctorat Thesis, Lorraine. Univ. (EMMA). LMOPS-SUPELEC. (2013).
  • M.A. Blanco, E. Francisco and V. Luana, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun. 158 (2004), pp. 57–72. doi: 10.1016/j.comphy.2003.12.001
  • A.T. Petit and P.L. Dulong, Recherches sur quelques points importants de la théorie de chaleur [Dulong, Research on some important points of the theory of heat], Ann. Chim. Phys 10 (1819), pp. 395–413.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.