378
Views
6
CrossRef citations to date
0
Altmetric
Part A: Materials Science

The defining role of interface crystallography in corrosion of a two-phase pearlitic steel

, , , , , , , & show all
Pages 1439-1453 | Received 08 Mar 2019, Accepted 27 Jan 2020, Published online: 24 Feb 2020

References

  • J.W. Oldfield, Electrochemical theory of galvanic corrosion, galvanic corrosion. ASTM STP 978 (1988), pp. 5–22.
  • H. Sunwoo, M.E. Fine, M. Meshi and D.H. Stone, Cyclic deformation of pearlite eutectoid rail steel. Metall. Mater. Trans. A 13A (1982), pp. 2035–2047. doi: 10.1007/BF02645949
  • N. Larijani, J. Brouzoulis, M. Schilke and E. Magnus, The effect of anisotropy on crack propagation in pearlitic rail steel. Wear 314 (2014), pp. 57–68. doi: 10.1016/j.wear.2013.11.034
  • B. Verlinden, J. Driver, I. Samajdar and R.D. Doherty, Thermo-Mechanical Processing of Metallic Materials, 1st ed., Pergamon Materials Series, Elsevier, Oxford, 2007.
  • T.L.M. Morgado and A. Sauca e Brito, A failure analysis study of a prestressed steel cable of a suspension bridge. Case Stud. Constr. Mater 3 (2015), pp. 40–47.
  • C. Borchers and R. Kirchheim, Cold-drawn pearlitic steel wires. Prog. Mater. Sci 82 (2016), pp. 405–444. doi: 10.1016/j.pmatsci.2016.06.001
  • J.D. Embury and R.M. Fisher, The structure and properties of drawn pearlite. Acta Metall. 14 (1966), pp. 147–159. doi: 10.1016/0001-6160(66)90296-3
  • G. Langford, Deformation of pearlite. Metall. Trans A8 (1977), pp. 861–875. doi: 10.1007/BF02661567
  • M. Zelin, Microstructure evolution in pearlitic steels during wire drawing. Acta Mater. 50 (2002), pp. 4431–4447. doi: 10.1016/S1359-6454(02)00281-1
  • X. Zhang, A. Godfrey, N. Hansen and X. Huang, Hierarchical structures in cold-drawn pearlitic steel wire. Acta Mater. 61 (2013), pp. 4898–4909. doi: 10.1016/j.actamat.2013.04.057
  • Y. Li, D. Raabe, M. Herbig, P.-P. Choi, S. Goto, A. Kostka, H. Yarita, C. Borchers, and R. Kirchheim, Segregation stabilizes nanocrystalline bulk steel with near theoretical strength. Phy. Rev. Lett 113 (2014), pp. 106104 (1–5).
  • T.Z. Zhao, G.L. Zhang, S.H. Zhang and L.Y. Zhang, Influence of lamellar direction in pearlitic steel wire on mechanical properties and microstructure evolution. J. Iron. Steel Res. Int 23 (2016), pp. 1290–1296. doi: 10.1016/S1006-706X(16)30190-X
  • J. Sánchez, J. Fullea, C. Andrade, J.J. Gaitero and A. Porro, AFM study of the early corrosion of a high strength steel in a diluted sodium chloride solution. Corros. Sci 50 (2008), pp. 1820–1824. doi: 10.1016/j.corsci.2008.03.013
  • M. Ferhat, A. Benchettara, S.E. Amara and D. Najjar, Corrosion behaviour of Fe-C alloys in a sulfuric medium. J. Mater. Environ. Sci 5 (2014), pp. 1059–1068.
  • V. Rault, V. Vignal, H. Krawiec and F. Dufour, Quantitative assessment of local misorientations and pitting corrosion behaviour of pearlitic steel using electron backscattered diffraction and microcapillary techniques. Corros. Sci 86 (2014), pp. 275–284. doi: 10.1016/j.corsci.2014.06.002
  • V. Vignal, V. Rault, H. Krawiec, A. Lukaszczyk and F. Dufour, Microstructure and corrosion behaviour of deformed pearlitic and brass-coated pearlitic steels in sodium chloride solution. Electrochim. Acta 203 (2016), pp. 416–425. doi: 10.1016/j.electacta.2016.03.005
  • X. Hao, J. Dong, I.I.N. Etim, J. Wei and W. Kie, Sustained effect of remaining cementite on the corrosion behavior of ferrite-pearlite steel under the simulated bottom plate environment of cargo oil tank. Corros. Sci 110 (2016), pp. 296–304. doi: 10.1016/j.corsci.2016.04.042
  • J. Toribio and E. Ovejero, Composite microstructure of cold-drawn pearlitic steel and its role in stress corrosion behavior. J. Mater. Eng. Perform 9 (2000), pp. 272–279. doi: 10.1361/105994900770345917
  • A. Durgaprasad, Microstructural engineering in pearlitic steel, Ph.D. diss., Indian Institute of Technology Bombay, Mumbai, 2017.
  • A. Durgaprasad, S. Giri, S. Lenka, S. Kundu, S. Mishra, S. Chandra, R.D. Doherty and I. Samajdar, Defining a relationship between pearlite morphology and ferrite crystallographic orientation. Acta Mater. 129 (2017), pp. 278–289. doi: 10.1016/j.actamat.2017.02.008
  • A. Durgaprasad, S. Giri, S. Lenka, S. Kundu, S. Mishra, S. Chandra, R.D. Doherty and I. Samajdar, Microstructures and mechanical properties of as-drawn and laboratory annealed pearlitic steel wires. Metall. Trans. A 48 (2017), pp. 4583–4597. doi: 10.1007/s11661-017-4269-5
  • A. Durgaprasad, S. Giri, S. Lenka, S. Kundu, S. Mishra, S. Chandra, R.D. Doherty and I. Samajdar, Microstructural engineering in eutectoid steel: A technological possibility? Metall. Trans. A 49 (2018), pp. 1520–1535. doi: 10.1007/s11661-018-4501-y
  • A. Durgaprasad, S. Giri, S. Lenka, S. Lenka, S.K. Sarkar, A. Biswas, S. Kundu, S. Mishra, S. Chandra, R.D. Doherty and I. Samajdar, Delamination of pearlitic steel wires: The defining role of prior-drawing microstructure. Metall. Trans. A 49 (2018), pp. 2037–2047. doi: 10.1007/s11661-018-4564-9
  • L.J. Van der Pauw, A method of measuring specific resistivity and hall effect of discs of arbitrary shape. Philips Res. Repts 13 (1958), pp. 1–5.
  • ASTM G106 − 89, ( Reapproved 2015) Standard Practice for Verification of Algorithm and Equipment for Electrochemical Impedance Measurements, ASTM International, West Conshohocken, PA, 2015.
  • ASTM G5-14, Standard Reference Test Method for Making Potentiodynamic Anodic Polarization Measurements, ASTM International, West Conshohocken, PA, 2014.
  • ASTM G102 – 89, ( Reapproved 1994) Standard Practice for Calculation of Corrosion Rate and Related Information From Electrochemical Measurements, ASTM International, West Conshohocken, PA, 1989.
  • E.E. Stansbury and R.A. Buchanan, Fundamentals of Electrochemical Corrosion, 2nd Printing ASM International, Ohio, 2000.
  • A. Czarski, T. Skowronek and W. Osuch, Influence of orientation relation between ferrite and cementite in pearlite on stability of cementite plates. Metall. & Found. Engg 33 (2007), pp. 41–49. doi: 10.7494/mafe.2007.33.1.41
  • H.K.D.H. Bhadeshia, Solution to the Bagaryatskii and Isaichev ferrite–cementite orientation relationship problem. Mater. Sci. Technol 34 (2018), pp. 1666–1668. doi: 10.1080/02670836.2018.1470746
  • M.A. Mangan and G.J. Shiflet, The Pitsch–Petch orientation relationship in ferrous pearlite at small undercooling. Metall. Mater. Trans. A 30 (1999), pp. 2767–2781. doi: 10.1007/s11661-999-0114-9
  • Y. OHMORI, Microstructural evolutions with precipitation of carbides in steels. ISIJ Int. 41 (2001), pp. 554–565. doi: 10.2355/isijinternational.41.554
  • D.S. Zhou and G.J. Shiflet, Ferrite: Cementite crystallography of pearlite. Metall. Trans. A 23 (1992), pp. 1259–1269. doi: 10.1007/BF02665057
  • K.E. Andrews, The structure of cementite and its relation to ferrite. Acta Metall. 11 (1963), pp. 939–946. doi: 10.1016/0001-6160(63)90063-4
  • J. Kim, K. Kang and S. Ryu, Characterization of the misfit dislocations at the ferrite cementite interface in pearlitic steel: An atomistic simulation study. Int. J. Plast 83 (2016), pp. 302–312. doi: 10.1016/j.ijplas.2016.04.016
  • H.K. Mehtani, M.I. Khan, A. Durgaprasad, S.K. Deb, S. Parida, M.J.N.V. Prasad and I. Samajdar, Oxidation kinetics in pearlite: The defining role of interface crystallography. Scr. Mater 152 (2018), pp. 44–48. doi: 10.1016/j.scriptamat.2018.04.011
  • W. Zhang and G.S. Frankel, Transitions between pitting and intergranular corrosion in AA2024. Electrochim. Acta 48 (2003), pp. 1193–1210. doi: 10.1016/S0013-4686(02)00828-9
  • Z. Zhao and G.S. Frankel, The effect of temper on the first breakdown in AA7075. Corr. Sci 49 (2007), pp. 3089–3111. doi: 10.1016/j.corsci.2007.02.004
  • J. Seong, G.S. Frankel and N. Sridhar, Corrosion inhibition of sensitized and solutionized AA5083. J. Electrochem. Soc 162 (2015), pp. 449–456. doi: 10.1149/2.0501509jes
  • J.E. Hatch, Aluminum Properties and Physical Metallurgy, 5th ed. American Society for Metals, Elsevier, Ohio, 1993.
  • D.N. Wasnik, G.K. Dey, V. Kain and I. Samajdar, Precipitation stages in a 316L austenitic stainless steel. Scr. Mater 49 (2003), pp. 135–141. doi: 10.1016/S1359-6462(03)00220-3
  • J. Feng, H. Li, K. Deng, C. Fernandez, Q. Zhang and Q. Peng, Unique corrosion resistance of ultrahigh pressure Mg-25Al binary alloys. Corr. Sci 143 (2018), pp. 229–239. doi: 10.1016/j.corsci.2018.08.013
  • H.Y. Choi and W.J. Kim, The improvement of corrosion resistance of AZ91 magnesium alloy through development of dense and tight network structure of Al-rich a phase by addition of a trace amount of Ti. J. Alloys Compd 696 (2017), pp. 736–745. doi: 10.1016/j.jallcom.2016.11.215
  • H.Y. Choi and W.J. Kim, Development of the highly corrosion resistant AZ31 magnesium alloy. J. Alloys Compd 664 (2016), pp. 25–37. doi: 10.1016/j.jallcom.2015.12.131
  • B. Mingo, R. Arrabal, M. Mohedano, A. Pardo, E. Matykina and A. Rivas, Enhanced corrosion resistance of AZ91 alloy produced by semisolid metal processing. J. Electrochem. Soc 162(4) (2015), pp. 180–188. doi: 10.1149/2.0521504jes
  • A.J. López, C. Taltavull, B. Torres, E. Otero and J. Rams, Characterization of the corrosion behavior of a Mg alloy in chloride solution. CORROSION 69(5) (2013), pp. 497–508. doi: 10.5006/0780
  • M.G. Fontana, Corrosion Engineering. 3rd ed. Tata McGraw-Hill, New Delhi, 2005.
  • W.T. Tsai and J.R. Chen, Galvanic corrosion between the constituent phases in duplex stainless steel. Corros. Sci 49 (2007), pp. 3659–3668. doi: 10.1016/j.corsci.2007.03.035
  • E. Symniotis, Galvanic effects on the active dissolution of duplex stainless steels. Corros. Sci 46 (1990), pp. 2–11. doi: 10.5006/1.3585062
  • R.A. Perren, T.A. Suter, P.J. Uggowitzer, L. Weber, R. Magdowski, H. Böhni and M.O. Speidel, Corrosion resistance of super duplex stainless steels in chloride ion containing environments: Investigations by means of a new micro-electrochemical method. I: Precipitation-free states. Corros. Sci 43 (2001), pp. 707–726. doi: 10.1016/S0010-938X(00)00087-1
  • V.C. Igwemezie and J.E.O. Ovri, Investigation into the effects of microstructure on the corrosion susceptibility of medium carbon steel. The Int. J. Engg. Sci 2 (2013), pp. 11–26.
  • G. Song, A. Atrens, X. Wu and B. Zhang, Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride. Corros. Sci 40 (1998), pp. 1769–1791. doi: 10.1016/S0010-938X(98)00078-X
  • N. Birbilis, M.K. Cavanaugh and R.G. Buchheit, Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651. Corros. Sci 48 (2006), pp. 4202–4215. doi: 10.1016/j.corsci.2006.02.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.