885
Views
22
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Study of basal < a > and pyramidal < c + a > slips in Mg-Y alloys using micro-pillar compression

, , , , , & show all
Pages 1454-1475 | Received 19 Jul 2019, Accepted 10 Jan 2020, Published online: 12 Feb 2020

References

  • T. Obara, H. Yoshinga and S. Morozumi, {112¯2}1¯1¯23slip system in magnesium. Acta Metall. 21(7) (1973), pp. 845–853. doi: 10.1016/0001-6160(73)90141-7
  • T. Al-Samman and X. Li, Sheet texture modification in magnesium-based alloys by selective rare earth alloying. Mater. Sci. Eng. A 528(10) (2011), pp. 3809–3822. doi: 10.1016/j.msea.2011.01.080
  • S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi and R. Gonzalez-Martinez, On the role of non-basal deformation mechanisms for the ductility of Mg and Mg–Y alloys. Acta Mater. 59(2) (2011), pp. 429–439. doi: 10.1016/j.actamat.2010.08.031
  • N. Stanford, D. Atwell and M.R. Barnett, The effect of Gd on the recrystallisation, texture and deformation behaviour of magnesium-based alloys. Acta Mater. 58(20) (2010), pp. 6773–6783. doi: 10.1016/j.actamat.2010.09.003
  • S. Sandlöbes, M. Friák, S. Zaefferer, A. Dick, S. Yi, D. Letzig, Z. Pei, L.F. Zhu, J. Neugebauer and D. Raabe, The relation between ductility and stacking fault energies in Mg and Mg–Y alloys. Acta Mater. 60(6–7) (2012), pp. 3011–3021. doi: 10.1016/j.actamat.2012.02.006
  • K.-H. Kim, J.B. Jeon, N.J. Kim and B.-J. Lee, Role of yttrium in activation of < c + a > slip in magnesium: an atomistic approach. Scripta Mater 108 (2015), pp. 104–108. doi: 10.1016/j.scriptamat.2015.06.028
  • Z. Huang, L. Wang, B. Zhou, T. Fischer, S. Yi and X. Zeng, Observation of non-basal slip in Mg-Y by in situ three-dimensional X-ray diffraction. Scripta Mater. 143 (2018), pp. 44–48. doi: 10.1016/j.scriptamat.2017.09.011
  • L. Wang, Z. Huang, H. Wang, A. Maldar, S. Yi, J.-S. Park, P. Kenesei, E. Lilleodden and X. Zeng, Study of slip activity in a Mg-Y alloy by in situ high energy X-ray diffraction microscopy and elastic viscoplastic self-consistent modeling. Acta Mater. 155 (2018), pp. 138–152. doi: 10.1016/j.actamat.2018.05.065
  • A. Kula, X. Jia, R.K. Mishra and M. Niewczas, Flow stress and work hardening of Mg-Y alloys. Inter. J. Plasticity 92 (2017), pp. 96–121. doi: 10.1016/j.ijplas.2017.01.012
  • J.R. Greer and J.T.M. De Hosson, Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56(6) (2011), pp. 654–724. doi: 10.1016/j.pmatsci.2011.01.005
  • Y. Liu, N. Li, M. Arul Kumar, S. Pathak, J. Wang, R.J. McCabe, N.A. Mara and C.N. Tomé, Experimentally quantifying critical stresses associated with basal slip and twinning in magnesium using micropillars. Acta Mater. 135 (2017), pp. 411–421. doi: 10.1016/j.actamat.2017.06.008
  • R. Chen, S. Sandlöbes, C. Zehnder, X. Zeng, S. Korte-Kerzel and D. Raabe, Deformation mechanisms, activated slip systems and critical resolved shear stresses in an Mg-LPSO alloy studied by micro-pillar compression. Mater. Des. 154 (2018), pp. 203–216. doi: 10.1016/j.matdes.2018.05.037
  • B. Syed, J. Geng, R.K. Mishra and K.S. Kumar, [0001] compression response at room temperature of single-crystal magnesium. Scripta Mater. 67(7) (2012), pp. 700–703. doi: 10.1016/j.scriptamat.2012.06.036
  • E. Lilleodden, Microcompression study of Mg (0001) single crystal. Scripta Mater. 62(8) (2010), pp. 532–535. doi: 10.1016/j.scriptamat.2009.12.048
  • C.M. Byer, B. Li, B. Cao and K.T. Ramesh, Microcompression of single-crystal magnesium. Scripta Mater. 62(8) (2010), pp. 536–539. doi: 10.1016/j.scriptamat.2009.12.017
  • K.Y. Xie, Z. Alam, A. Caffee and K.J. Hemker, Pyramidal I slip in c-axis compressed Mg single crystals. Scripta Mater. 112 (2016), pp. 75–78. doi: 10.1016/j.scriptamat.2015.09.016
  • Y. Tang and J.A. El-Awady, Formation and slip of pyramidal dislocations in hexagonal close-packed magnesium single crystals, Acta Mater. 71 (2014), pp. 319–332. doi: 10.1016/j.actamat.2014.03.022
  • B. Li and E. Ma, Pyramidal slip in magnesium: dislocations and stacking fault on the {101¯1}plane, Philos. Mag. 89(14) (2009), pp. 1223–1235. doi: 10.1080/14786430902936707
  • Z. Wu, R. Ahmad, B. Yin, S. Sandlöbes and W.A. Curtin, Mechanistic origin and prediction of enhanced ductility in magnesium alloys. Science 359(6374) (2018), pp. 447–452. doi: 10.1126/science.aap8716
  • L. Jiang and N. Chawla, Mechanical properties of Cu6Sn5 intermetallic by micropillar compression testing. Scr. Mater. 63 (2010), pp. 480–483. doi: 10.1016/j.scriptamat.2010.05.009
  • I.N. Sneddon, The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3 (1965), pp. 47–57. doi: 10.1016/0020-7225(65)90019-4
  • G. Simmons, H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, MIT Press, Cambridge, MA, 1971.
  • M. Tane, Y. Nagai, H. Kimizuka, K. Hagihara and Y. Kawamura, Elastic properties of an Mg–Zn–Y alloy single crystal with a long-period stacking-ordered structure. Acta Mater. 61 (2013), pp. 6338–6351. doi: 10.1016/j.actamat.2013.06.041
  • S.Q. Zhu and S.P. Ringer, On the role of twinning and stacking faults on the crystal plasticity and grain refinement in magnesium alloys. Acta Mater. 144 (2018), pp. 365–375. doi: 10.1016/j.actamat.2017.11.004
  • X. Wang, L. Jiang, A. Luo, J. Song, Z. Liu, F. Yin, Q. Han, S. Yue and J.J. Jonas, Deformation of twins in a magnesium alloy under tension at room temperature. J. Alloys Compd. 594 (2014), pp. 44–47. doi: 10.1016/j.jallcom.2014.01.100
  • B. Li, P.F. Yan, M.L. Sui and E. Ma, Transmission electron microscopy study of stacking faults and their interaction with pyramidal dislocations in deformed Mg. Acta Mater. 58(1) (2010), pp. 173–179. doi: 10.1016/j.actamat.2009.08.066
  • X.H. Shao, Z.Q. Yang and X.L. Ma, Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure. Acta Mater. 58(14) (2010), pp. 4760–4771. doi: 10.1016/j.actamat.2010.05.012
  • M. Yamasaki, K. Hagihara, S.-I. Inoue, J.P. Hadorn and Y. Kawamura, Crystallographic classification of kink bands in an extruded Mg–Zn–Y alloy using intragranular misorientation axis analysis. Acta Mater. 61(6) (2013), pp. 2065–2076. doi: 10.1016/j.actamat.2012.12.026
  • F. Wang, C.D. Barrett, R.J. McCabe, H. El Kadiri, L. Capolungo and S.R. Agnew, Dislocation induced twin growth and formation of basal stacking faults in {101¯2} twins in pure Mg. Acta Mater., 165 (2019), pp. 471–485. doi: 10.1016/j.actamat.2018.12.003
  • J.W. Christian and S. Mahajan, Deformation twinning. Prog. Mater. Sci 39(1) (1995), pp. 1–157. doi: 10.1016/0079-6425(94)00007-7
  • B. Li, X.Y. Zhang, Global strain generated by shuffling-dominated {101¯2}101¯1¯twinning. Scripta Mater. 71 (2014), pp. 45–48. doi: 10.1016/j.scriptamat.2013.10.002
  • S.R. Agnew, J.A. Horton and M.H. Yoo, Transmission electron microscopy investigation of < c + a > dislocations in Mg and α-solid solution Mg-Li alloys. Metall. Mater. Trans. A 33 (2002), pp. 851–858. doi: 10.1007/s11661-002-0154-x
  • B.-Y. Liu, J. Wang, B. Li, L. Lu, X.-Y. Zhang, Z.-W. Shan, J. Li, C.-L. Jia, J. Sun and E. Ma, Twinning-like lattice reorientation without a crystallographic twinning plane. Nat. Commun. 5 (2014), pp. 3297. doi: 10.1038/ncomms4297
  • S. Mendelson, Dislocation dissociations in hcp metals. J Appl. Phys. 41(5) (1970), pp. 1893–1910. doi: 10.1063/1.1659139
  • J.P. Hirth, J. Lothe, Theory of Dislocations, 2nd ed. John Wiley & Sons, New York, 1982.
  • A. Serra, D.J. Bacon, A new model for {101¯2}twin growth in hcp metals. Philos. Mag. A, 73(2) (1996), pp. 333–343. doi: 10.1080/01418619608244386
  • B. Li and E. Ma, Atomic shuffling dominated mechanism for deformation twinning in magnesium. Phys. Rev. Lett. 103(3) (2009), pp. 035503. doi: 10.1103/PhysRevLett.103.035503
  • N. Stanford, R.K.W. Marceau and M.R. Barnett, The effect of high yttrium solute concentration on the twinning behaviour of magnesium alloys. Acta Mater. 82 (2015), pp. 447–456. doi: 10.1016/j.actamat.2014.09.022
  • R.E. Reed-Hill and W.D. Robertson, Additional modes of deformation twinning in magnesium. Acta Metall. 5(12) (1957), pp. 717–727. doi: 10.1016/0001-6160(57)90074-3
  • S.R. Agnew, L. Capolungo and C.A. Calhoun, Connections between the basal I1 “growth” fault and < c + a > dislocations. Acta Mater. 82 (2015), pp. 255–265. doi: 10.1016/j.actamat.2014.07.056
  • J. Ye, R.K. Mishra, A.K. Sachdev and A.M. Minor, In situ TEM compression testing of Mg and Mg–0.2 wt.% Ce single crystals. Scripta Mater. 64(3) (2011), pp. 292–295. doi: 10.1016/j.scriptamat.2010.09.047
  • C.M. Byer and K.T. Ramesh, Effects of the initial dislocation density on size effects in single-crystal magnesium. Acta Mater. 61(10) (2013), pp. 3808–3818. doi: 10.1016/j.actamat.2013.03.019
  • M.D. Uchic, D.M. Dimiduk, J.N. Florando and W.D. Nix, Sample dimensions influence strength and crystal plasticity. Science 305(5686) (2004), pp. 986–989. doi: 10.1126/science.1098993
  • K.E. Prasad, K. Rajesh and U. Ramamurty, Micropillar and macropillar compression responses of magnesium single crystals oriented for single slip or extension twinning. Acta Mater. 65 (2014), pp. 316–325. doi: 10.1016/j.actamat.2013.10.073
  • Q. Yu, L. Qi, K. Chen, R.K. Mishra, J. Li and A.M. Minor, The Nanostructured origin of deformation twinning. Nano Lett. 12(2) (2012), pp. 887–892. doi: 10.1021/nl203937t
  • Q. Yu, Z.W. Shan, J. Li, X. Huang, L. Xiao, J. Sun and E. Ma, Strong crystal size effect on deformation twinning. Nature 463(7279) (2010), pp. 335–338. doi: 10.1038/nature08692
  • A. Akhtar and E. Teghtsoonian, Solid solution strengthening of magnesium single crystals – I alloying behaviour in basal slip. Acta Metall. 17(11) (1969), pp. 1339–1349. doi: 10.1016/0001-6160(69)90151-5
  • J. Wang and N. Stanford, Investigation of precipitate hardening of slip and twinning in Mg5%Zn by micropillar compression. Acta Mater. 100 (2015), pp. 53–63. doi: 10.1016/j.actamat.2015.08.012
  • N. Stanford, R. Cottam, B. Davis and J. Robson, Evaluating the effect of yttrium as a solute strengthener in magnesium using in situ neutron diffraction. Acta Mater. 78 (2014), pp. 1–13. doi: 10.1016/j.actamat.2014.06.023

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.