209
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Geometric dynamic recrystallization of austenitic stainless steel through linear plane-strain machining

ORCID Icon, , , &
Pages 1102-1128 | Received 19 Nov 2019, Accepted 22 Jan 2020, Published online: 13 Feb 2020

References

  • M.F. McGuire, Stainless Steels for Design Engineers, Asm International, Materials Park, OH, 2008.
  • K. Spencer, M. Véron, K. Yu-Zhang and J.D. Embury, The strain induced martensite transformation in austenitic stainless steels: Part 1–influence of temperature and strain history. Mater. Sci. Technol 25 (2009), pp. 7–17. doi: 10.1179/174328408X293603
  • C. Ye, A. Telang, A.S. Gill, S. Suslov, Y. Idell, K. Zweiacker, J.M.K. Wiezorek, Z. Zhou, D. Qian, S.R. Mannava and V.K. Vasudevan, Gradient nanostructure and residual stresses induced by ultrasonic nano-crystal surface modification in 304 austenitic stainless steel for high strength and high ductility. Mater. Sci. Eng. A 613 (2014). doi:10.1016/j.msea.2014.06.114.
  • M. Eskandari, A. Najafizadeh and A. Kermanpur, Effect of strain-induced martensite on the formation of nanocrystalline 316L stainless steel after cold rolling and annealing. Mater. Sci. Eng. A 519 (2009), pp. 46–50. doi:10.1016/j.msea.2009.04.038.
  • A.F. Padilha, R.L. Plaut and P.R. Rios, Annealing of cold-worked austenitic stainless steels. ISIJ Int. 43 (2003), pp. 135–143. doi:10.2355/isijinternational.43.135.
  • T. Angel, Formation of martensite in austenitic stainless steels. J. Iron Steel Inst 177 (1954), pp. 165–174.
  • G.V. Kurdyumov and O.P. Maksimova, Kinetics of the transformation of austenite into martensite at low temperatures. Dokl. Akad. Nauk SSSR 61 (1948), pp. 83–86.
  • V.M. Segal, V.I. Reznikov, A.E. Dobryshevshiy, and V.I. Kopylov, Plastic working of metals by simple shear. Russ. Metall 1 (1981), pp. 99–105.
  • R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu and T.C. Lowe, Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res 17 (2002), pp. 5–8. doi:10.1557/JMR.2002.0002.
  • N.A. Smirnova, V.I. Levit, V.I. Pilyugin, R.I. Kuznetsov, L.S. Davydova and V.A. Sazonova, Evolution of structure of FCC single crystals during strong plastic deformation. Phys. Met. Met 61 (1986), pp. 127–134.
  • J. Languillaume, F. Chmelik, G. Kapelski, F. Bordeaux, A.A. Nazarov, G. Canova, C. Esling, R.Z. Valiev and B. Baudelet, Microstructures and hardness of ultrafine-grained Ni3Al. Acta Metall. Mater 41 (1993), pp. 2953–2962. doi:10.1016/0956-7151(93)90110-E.
  • R.K. Islamgaliev, F. Chmelik, I.F. Gibadullin, W. Biegel and R.Z. Valiev, The nanocrystalline structure formation in germanium subjected to severe plastic deformation. Nanostructured Mater 4 (1994), pp. 387–395. doi:10.1016/0965-9773(94)90109-0.
  • X.H. Chen, J. Lu, L. Lu and K. Lu, Tensile properties of a nanocrystalline 316L austenitic stainless steel. Scr. Mater 52 (2005), pp. 1039–1044. doi:10.1016/j.scriptamat.2005.01.023.
  • Z. Pakieła, M. Suś-Ryszkowska, A. Drużycka-Wiencek, K. Sikorski and K.J. Kurzydłowski, Microstructure and properties of nano-metals obtained by severe plastic deformation. Inżynieria Mater 25 (2004), pp. 407–410. doi: 10.1016/j.matdes.2003.11.009
  • R.Z. Valiev, N.A. Krasilnikov and N.K. Tsenev, Plastic deformation of alloys with submicron-grained structure. Mater. Sci. Eng. A 137 (1991), pp. 35–40. doi:10.1016/0921-5093(91)90316-F.
  • R.Z. Valiev, N.K. Tsenev, T.G. Hot Deformation of Aluminum Alloys ( T.G. Langdon, H.D. Merchant, J.G. Morris, M.A. Zaidi, eds.), The Mines, Metals, and Materials Society, Warrendale, PA, 1991, 319.
  • Y. Idell, G. Facco, A. Kulovits, M.R. Shankar and J.M.K. Wiezorek, Strengthening of austenitic stainless steel by formation of nanocrystalline γ-phase through severe plastic deformation during two-dimensional linear plane-strain machining. Scr. Mater 68 (2013), pp. 667–670. doi:10.1016/j.scriptamat.2013.01.025.
  • S. Swaminathan, M.R. Shankar, B.C. Rao, W.D. Compton, S. Chandrasekar, A.H. King and K.P. Trumble, Severe plastic deformation (SPD) and nanostructured materials by machining. J. Mater. Sci 42 (2007), pp. 1529–1541. doi:10.1007/s10853-006-0745-9.
  • B.L. Juneja, Fundamentals of Metal Cutting and Machine Tools, New Age International, New Dehli, India, 2003.
  • S. Swaminathan, M.R. Shankar, S. Lee, J. Hwang, A.H. King, R.F. Kezar, B.C. Rao, T.L. Brown, S. Chandrasekar and W.D. Compton, Large strain deformation and ultra-fine grained materials by machining. Mater. Sci. Eng. A 410 (2005), pp. 358–363. doi:10.1016/j.msea.2005.08.139.
  • J.M.K. Wiezorek, G. Facco, Y. Idell, A. Kulovits, and M.R. Shankar, Nano-structuring of 316L type steel by severe plastic deformation processing using two-dimensional linear plane strain machining. Mater. Sci. Forum 783–786 (2014), pp. 2720–2725. www.scientific.net/MSF.783-786.2720 doi: 10.4028/www.scientific.net/MSF.783-786.2720
  • J. Portillo, E.F. Rauch, S. Nicolopoulos, M. Gemmi, and D. Bultreys, Precession electron diffraction assisted orientation mapping in the transmission electron microscope, in Mater. Sci. Forum, Trans Tech Publications Ltd, Zurich, Switzerland, 2010. pp. 1–7.
  • M. Wojdyr, Fityk: a general-purpose peak fitting program. J. Appl. Crystallogr 43 (2010), pp. 1126–1128. doi:10.1107/S0021889810030499.
  • M.E. Merchant, Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J. Appl. Phys. 16 (1945), pp. 267–275. doi:10.1063/1.1707586.
  • M.C. Shaw and J.O. Cookson, Metal Cutting Principles, Oxford university press, New York, 2005.
  • H. Ueno, K. Kakihata, Y. Kaneko, S. Hashimoto and A. Vinogradov, Nanostructurization assisted by twinning during equal channel angular pressing of metastable 316L stainless steel. J. Mater. Sci 46 (2011), pp. 4276–4283. doi:10.1007/s10853-011-5303-4.
  • A. Sarkar, A. Bhowmik and S. Suwas, Microstructural characterization of ultrafine-grain interstitial-free steel by X-ray diffraction line profile analysis. Appl. Phys. A 94 (2009), pp. 943–948. doi:10.1007/s00339-008-4870-y.
  • B.P. Kashyap and K. Tangri, Hall-Petch relationship and substructural evolution in boron containing type 316L stainless steel. Acta Mater. 45 (1997), pp. 2383–2395. doi:10.1016/S1359-6454(96)00341-2.
  • J.S.C. Jang and C.C. Koch, The Hall-Petch relationship in nanocrystalline iron produced by ball milling. Scr. Metall. Mater 24 (1990), pp. 1599–1604. doi:10.1016/0956-716X(90)90439-N.
  • M. Zhao and Q. Jiang, Reverse hall-petch relationship of metals in nanometer size, in 2006 IEEE Conf. Emerg. Technol., Singapore, IEEE, 2006. pp. 472–474.
  • T.G. Nieh and J. Wadsworth, Hall-Petch relation in nanocrystalline solids. Scr. Metall. Mater 25 (1991), pp. 955–958. doi:10.1016/0956-716X(91)90256-Z.
  • B. Cai, Q.P. Kong, L. Lu and K. Lu, Interface controlled diffusional creep of nanocrystalline pure copper. Scr. Mater. 41 (1999), pp. 755–759. doi: 10.1016/S1359-6462(99)00213-4
  • A.H. Chokshi, A. Rosen, J. Karch and H. Gleiter, On the validity of the Hall-Petch relationship in nanocrystalline materials. Scr. Metall 23 (1989), pp. 1679–1683. doi:10.1016/0036-9748(89)90342-6.
  • H. Hahn and K.A. Padmanabhan, A model for the deformation of nanocrystalline materials. Philos. Mag. B 76 (1997), pp. 559–571. doi:10.1080/01418639708241122.
  • H. Van Swygenhoven, M. Spaczer and A. Caro, Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between Cu and Ni. Acta Mater. 47 (1999), pp. 3117–3126. doi:10.1016/S1359-6454(99)00109-3.
  • G. Palumbo, U. Erb and K.T. Aust, Triple line disclination effects on the mechanical behaviour of materials. Scr. Metall. Mater 24 (1990), pp. 2347–2350. doi:10.1016/0956-716X(90)90091-T.
  • J.B. Nelson and D.P. Riley, An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals. Proc. Phys. Soc 57 (1945), pp. 160–177. doi:10.1088/0959-5309/57/3/302.
  • B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction, 3rd ed., Prentice Hall, Upper Saddle River, 2001.
  • G.K. Williamson and W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Met 1 (1953), pp. 22–31. doi:10.1016/0001-6160(53)90006-6.
  • A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev 56 (1939), pp. 978–982. doi:10.1103/PhysRev.56.978.
  • J. Speer, D.K. Matlock, B.C. De Cooman and J.G. Schroth, Carbon partitioning into austenite after martensite transformation. Acta Mater. 51 (2003), pp. 2611–2622. doi:10.1016/S1359-6454(03)00059-4.
  • H.C. Fiedler, The effect of deformation on the martensitic transformation in austenitic stainless steels. Trans. ASM 47 (1955), pp. 267–290.
  • E.S. Machlin and M. Cohen, Burst phenomenon in the martensitic transformation. JOM 3 (1951), pp. 746–754. doi:10.1007/BF03397387.
  • J.F. Breedis and W.D. Robertson, Martensitic transformation and plastic deformation in iron alloy single crystals. Acta Metall. 11 (1963), pp. 547–559. doi:10.1016/0001-6160(63)90089-0.
  • J.R. Strife, M.J. Carr and G.S. Ansell, The effect of austenite prestrain above the M d temperature on the martensitic transformation in Fe-Ni-Cr-C alloys. Metall. Trans. A 8 (1977), pp. 1471–1484. doi:10.1007/BF02642861.
  • H.X. Gao and L.-M. Peng, Parameterization of the temperature dependence of the Debye–waller factors. Acta Crystallogr. Sect. A Found. Crystallogr 55 (1999), pp. 926–932. doi:10.1107/S0108767399005176.
  • T. Hahn, U. Shmueli, and J.C.W. Arthur, International Tables for Crystallography, Reidel Dordrecht, Berlin, Germany1983.
  • S. Abolghasem, S. Basu, S. Shekhar, J. Cai and M.R. Shankar, Mapping subgrain sizes resulting from severe simple shear deformation. Acta Mater. 60 (2012), pp. 376–386. doi:10.1016/j.actamat.2011.09.055.
  • D. Umbrello, R. M’saoubi and J.C. Outeiro, The influence of Johnson–cook material constants on finite element simulation of machining of AISI 316L steel. Int. J. Mach. Tools Manuf 47 (2007), pp. 462–470. doi:10.1016/j.ijmachtools.2006.06.006.
  • G.R. Johnson, A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures. Proc. 7th Inf. Sympo. Ballist. 1 (1983), pp. 541–547.
  • A.H. Adibi-Sedeh, V. Madhavan and B. Bahr, Extension of Oxley’s analysis of machining to use different material models. J. Manuf. Sci. Eng 125 (2003), pp. 656–666. doi:10.1115/1.1617287.
  • H. Chandrasekaran, R. M’saoubi and H. Chazal, Modelling of material flow stress in chip formation process from orthogonal milling and split Hopkinson bar tests. Mach. Sci. Technol 9 (2005), pp. 131–145. doi:10.1081/MST-200051380.
  • C. Gammer, C. Mangler, C. Rentenberger and H.P. Karnthaler, Quantitative local profile analysis of nanomaterials by electron diffraction. Scr. Mater 63 (2010), pp. 312–315. doi:10.1016/j.scriptamat.2010.04.019.
  • H.F.G. de Abreu, S.S. de Carvalho, P. de Lima Neto, R.P. dos Santos, V.N. Freire, P.M.d.O. Silva and S.S.M. Tavares, Deformation induced martensite in an AISI 301LN stainless steel: characterization and influence on pitting corrosion resistance. Mater. Res 10 (2007), pp. 359–366. doi:10.1590/S1516-1439200700040 doi: 10.1590/S1516-14392007000400007
  • X. Wu, X. Pan, J.C. Mabon, M. Li and J.F. Stubbins, The role of deformation mechanisms in flow localization of 316L stainless steel. J. Nucl. Mater. 356 (2006), pp. 70–77. doi:10.1016/j.jnucmat.2006.05.047.
  • Y.T. Zhu, X.Z. Liao, X.L. Wu and J. Narayan, Grain size effect on deformation twinning and detwinning. J. Mater. Sci 48 (2013), pp. 4467–4475. doi:10.1007/s10853-013-7140-0.
  • A. Mishra, B.K. Kad, F. Gregori and M.A. Meyers, Microstructural evolution in copper subjected to severe plastic deformation: experiments and analysis. Acta Mater. 55 (2007), pp. 13–28. doi:10.1016/j.actamat.2006.07.008.
  • N.R. Tao and K. Lu, Nanoscale structural refinement via deformation twinning in face-centered cubic metals. Scr. Mater 60 (2009), pp. 1039–1043. doi:10.1016/j.scriptamat.2009.02.008.
  • A. Rollett, F.J. Humphreys and G.S. Rohrer, Recrystallization and Related Annealing Phenomena, 3rd ed., Elsevier, Cambride, 2017.
  • J. Junior, A. Moreira and O. Balancin, Prediction of steel flow stresses under hot working conditions. Mater. Res. 8 (2005), pp. 309–315. doi:10.1590/S1516-14392005000300015.
  • D. Ponge and G. Gottstein, Necklace formation during dynamic recrystallization: mechanisms and impact on flow behavior. Acta Mater. 46 (1998), pp. 69–80. doi:10.1016/S1359-6454(97)00233-4.
  • S. Gourdet and F. Montheillet, An experimental study of the recrystallization mechanism during hot deformation of aluminium. Mater. Sci. Eng. A 283 (2000), pp. 274–288. doi:10.1016/S0921-5093(00)00733-4.
  • C. Perdrix, M.Y. Perrin, and F. Montheillet, Mechanical Behavior and structure development of aluminum during Hot deformation With large Amplitude. Mem. Etud. Sci. Rev. Met 78 (1981), pp. 309–320.
  • S. White, A Discussion on natural strain and geological structure-The effects of strain on the microstructures, fabrics, and deformation mechanisms in quartzites. Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci. 283 (1976), pp. 69–86. doi:10.1098/rsta.1976.0070.
  • S.E. Ion, F.J. Humphreys and S.H. White, Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium. Acta Metall. 30 (1982), pp. 1909–1919. doi:10.1016/0001-6160(82)90031-1.
  • T. Sakai, A. Belyakov and H. Miura, Ultrafine grain formation in ferritic stainless steel during severe plastic deformation. Metall. Mater. Trans. A 39 (2008), pp. 2206–2214. doi:10.1007/s11661-008-9556-8.
  • T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura and J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci 60 (2014), pp. 130–207. doi:10.1016/j.pmatsci.2013.09.002.
  • F. Montheillet and J.-P. Thomas, Dynamic recrystallization of low stacking fault energy metals, in Met. Mater. with High Struct. Effic, Senkov O., Miracle D., Firstov S., eds., Springer, New York, NY, 2004. pp. 357–368.
  • Z. Yanushkevich, A. Belyakov and R. Kaibyshev, Microstructural evolution of a 304-type austenitic stainless steel during rolling at temperatures of 773–1273 K. Acta Mater. 82 (2015), pp. 244–254. doi:10.1016/j.actamat.2014.09.023.
  • O. Sitdikov and R. Kaibyshev, Dynamic recrystallization in pure magnesium. Mater. Trans 42 (2001), pp. 1928–1937. doi:10.2320/matertrans.42.1928.
  • H.J. McQueen and W. Blum, Dynamic recovery: sufficient mechanism in the hot deformation of Al (< 99.99). Mater. Sci. Eng. A 290 (2000), pp. 95–107. doi:10.1016/S0921-5093(00)00933-3.
  • M.E. Kassner and S.R. Barrabes, New developments in geometric dynamic recrystallization. Mater. Sci. Eng. A 410 (2005), pp. 152–155. doi:10.1016/j.msea.2005.08.052.
  • J. Talonen and H. Hänninen, Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Mater. 55 (2007), pp. 6108–6118. doi:10.1016/j.actamat.2007.07.015.
  • L.E. Murr, Interfacial Phenomena in Metals and Alloys, Addison Wesley Publishing Company, Reading, MA, 1975.
  • R. Kaibyshev, K. Shipilova, F. Musin and Y. Motohashi, Continuous dynamic recrystallization in an Al–Li–Mg–Sc alloy during equal-channel angular extrusion. Mater. Sci. Eng. A 396 (2005), pp. 341–351. doi:10.1016/j.msea.2005.01.053.
  • K. Tsuzaki, X. Huang and T. Maki, Mechanism of dynamic continuous recrystallization during superplastic deformation in a microduplex stainless steel. Acta Mater. 44 (1996), pp. 4491–4499. doi:10.1016/1359-6454(96)00080-8.
  • W.C. Liu, D.J. Jensen and J.G. Morris, Effect of grain orientation on microstructures during hot deformation of AA 3104 aluminium alloy by plane strain compression. Acta Mater. 49 (2001), pp. 3347–3367. doi:10.1016/S1359-6454(01)00009-X.
  • X. Yang, H. Miura and T. Sakai, Dynamic evolution of new grains in magnesium alloy AZ31 during hot deformation. Mater. Trans 44 (2003), pp. 197–203. doi:10.2320/matertrans.44.197.
  • L.S. Tóth, Y. Estrin, R. Lapovok and C. Gu, A model of grain fragmentation based on lattice curvature. Acta Mater. 58 (2010), pp. 1782–1794. doi:10.1016/j.actamat.2009.11.020.
  • G.A. Henshall, M.E. Kassner and H.J. McQueen, Dynamic restoration mechanisms in Al-5.8 At. Pct Mg deformed to large strains in the solute drag regime. Metall. Trans. A 23 (1992), pp. 881–889. doi:10.1007/BF02675565.
  • A. Gholinia, F.J. Humphreys and P.B. Prangnell, Production of ultra-fine grain microstructures in Al–Mg alloys by coventional rolling. Acta Mater. 50 (2002), pp. 4461–4476. doi:10.1016/S1359-6454(02)00253-7.
  • H.J. McQueen, O. Knustad, N. Ryum and J.K. Solberg, Microstructural evolution in Al deformed to strains of 60 at 400 C. Scr. Metall. 19 (1985), pp. 73–78. doi: 10.1016/0036-9748(85)90268-6
  • R. Sandström and R. Lagneborg, A model for hot working occurring by recrystallization. Acta Metall. 23 (1975), pp. 387–398. doi:10.1016/0001-6160(75)90132-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.