249
Views
5
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effect of microstructure on fracture in age hardenable Al alloys

, , &
Pages 1476-1498 | Received 05 Aug 2019, Accepted 28 Jan 2020, Published online: 17 Feb 2020

References

  • D.J. Lloyd, D. Evans, C. Pelow, P. Nolan and M. Jain, Bending in aluminium alloys AA 6111 and AA 5754 using the cantilever bend test. Mater. Sci. Technol. 18 (2002), pp. 621–628. doi: 10.1179/026708302225003604
  • S. Ikawa, M. Asano, M. Kuroda and K. Yoshida, Effects of crystal orientation on bendability of aluminum alloy sheet. Mater. Sci. Eng. A 528 (2011), pp. 4050–4054. doi: 10.1016/j.msea.2011.01.048
  • J. Sarkar, T.R.G. Kutty, K.T. Conlon, D.S. Wilkinson, J.D. Embury and D.J. Lloyd, Tensile and bending properties of AA5754 aluminum alloys. Mater. Sci. Eng. A 316 (2001), pp. 52–59. doi: 10.1016/S0921-5093(01)01226-6
  • Y. Shi, H. Jin, P.D. Wu, D.J. Lloyd and D. Embury, Failure analysis of fusion clad alloy system AA3003/AA6xxx sheet under bending. Mater. Sci. Eng. A 610 (2014), pp. 263–272. doi: 10.1016/j.msea.2014.05.047
  • R. Akeret, Failure mechanisms in the bending of aluminum sheets and limits of bendability. Aluminum 54 (1978), pp. 117–123.
  • M. Dao and M. Li, A micromechanics study on strain-localization-induced fracture initiation in bending using crystal plasticity models. Philos. Mag. A 81 (2001), pp. 1997–2020. doi: 10.1080/01418610108216649
  • W.B. Lievers, A.K. Pilkey and D.J. Lloyd, The influence of iron content on the bendability of AA6111 sheet. Mater. Sci. Eng. A 361 (2003), pp. 312–320. doi: 10.1016/S0921-5093(03)00535-5
  • C. Soyarslan, M. Malekipour Gharbi and A.E. Tekkaya, A combined experimental–numerical investigation of ductile fracture in bending of a class of ferritic–martensitic steel. Int. J. Solids Struct 49 (2012), pp. 1608–1626. doi: 10.1016/j.ijsolstr.2012.03.009
  • D.J. Lloyd, Bending in aluminum automotive alloys, in Advances in the Metallurgy of Aluminum Alloys: Proceedings from Materials Solutions Conference, Tiryakioglu, M, ed., 2001, pp. 160–166.
  • A.J. Beaudoin, J.D. Bryant and D.A. Korzekwa, Analysis of ridging in aluminum auto body sheet metal. Metall. Mater. Trans. A 29 (1998), pp. 2323–2332. doi: 10.1007/s11661-998-0109-y
  • D. Raabe, M. Sachtleber, H. Weiland, G. Scheele and Z. Zhao, Grain-scale micromechanics of polycrystal surfaces during plastic straining. Acta Mater. 51 (2003), pp. 1539–1560. doi: 10.1016/S1359-6454(02)00557-8
  • O. Engler and J. Hirsch, Texture control by thermomechanical processing of AA6xxx Al-Mg-Si sheet alloys for automotive applications - a review. Mater. Sci. Eng., A 336 (2002), pp. 249–262. doi: 10.1016/S0921-5093(01)01968-2
  • R. Becker, Effects of strain localization on surface roughening during sheet forming. Acta Mater. 46 (1998), pp. 1385–1401. doi: 10.1016/S1359-6454(97)00182-1
  • M. Jain, D.J. Lloyd and S.R. MacEwen, Hardening laws, surface roughness and biaxial tensile limit strains of sheet aluminium alloys. Int. J. Mech. Sci. 38 (1996), pp. 219–232. doi: 10.1016/0020-7403(95)00038-Y
  • R. Mahmudi and M. Mehdizadeh, Surface roughening during uniaxial and equi-biaxial stretching of 70–30 brass sheets. J. Mater. Process. Technol 80–81 (1998), pp. 707–712. doi: 10.1016/S0924-0136(98)00099-5
  • T. Mizuno and H. Mulki, Changes in surface texture of zinc-coated steel sheets under plastic deformation. Wear 198(2) (1996), pp. 176–184. doi: 10.1016/0043-1648(96)06963-3
  • K. Osakada and M. Oyane, On the roughening of free surface in deformation processes. Bulletin of JSME 14 (1971), pp. 171–177. doi: 10.1299/jsme1958.14.171
  • D.V. Wilson, W.T. Roberts and P.M.B. Rodrigues, Effects of grain anisotropy on limit strains in biaxial stretching: part ii. sheets of cubic metals and alloys with well-developed preferred orientations. Metall. Trans. A 12 (1981), pp. 1603–1611. doi: 10.1007/BF02643566
  • M.R. Stoudt and J.B. Hubbard, Analysis of deformation-induced surface morphologies in steel sheet. Acta Mater. 53 (2005), pp. 4293–4304. doi: 10.1016/j.actamat.2005.05.038
  • T.J. Turner and M.P. Miller, Modeling the Influence of material Structure on deformation induced surface roughening in AA7050 thick plate. J. Eng. Mater. Technol 129 (2007), pp. 367–379. doi: 10.1115/1.2744395
  • P.D. Wu and D.J. Lloyd, Analysis of surface roughening in AA6111 automotive sheet. Acta Mater. 52 (2004), pp. 1785–1798. doi: 10.1016/j.actamat.2003.12.039
  • M.R. Stoudt, J.B. Hubbard, J.E. Carsley and S.E. Hartfield-Wünsch, Characterizing the hemming performance of automotive aluminum alloys with high-resolution topographic imaging. J. Eng. Mater. Technol 136 (2014), pp. 031001–031014. doi: 10.1115/1.4027093
  • L. Mattei, D. Daniel, G. Guiglionda, H. Klöcker and J. Driver, Strain localization and damage mechanisms during bending of AA6016 sheet. Mater. Sci. Eng., A 559 (2013), pp. 812–821. doi: 10.1016/j.msea.2012.09.028
  • A. Davidkov, R.H. Petrov, P. De Smet, B. Schepers and L.A.I. Kestens, Microstructure controlled bending response in AA6016 Al alloys. Mater. Sci. Eng., A 528 (2011), pp. 7068–7076. doi: 10.1016/j.msea.2011.05.055
  • P. Castany, F. Diologent, A. Rossoll, J.-F. Despois, C. Bezençon and A. Mortensen, Influence of quench rate and microstructure on bendability of AA6016 aluminum alloys. Mater. Sci. Eng., A 559 (2013), pp. 558–565. doi: 10.1016/j.msea.2012.08.141
  • G.J. Baczynski, R. Guzzo, M.D. Ball and D.J. Lloyd, Development of roping in an aluminum automotive alloy AA6111. Acta Mater. 48 (2000), pp. 3361–3376. doi: 10.1016/S1359-6454(00)00141-5
  • J.D. Bryant, A.J. Beaudoin and R.T. VanDyke, The effect of crystallographic texture on the formability of AA 2036 autobody sheet. SAE Tech. Pap 940161 (1994), pp. 1–11.
  • A.K. Vasudévan and R.D. Doherty, Grain boundary ductile fracture in precipitation hardened aluminum alloys. Acta Metall. 35 (1987), pp. 1193–1219. doi: 10.1016/0001-6160(87)90001-0
  • P. Schwellinger, On the mechanism of ductile intergranular fracture in Al-Mg-Si alloys. Scr. Metall 12 (1978), pp. 899–901. doi: 10.1016/0036-9748(78)90178-3
  • D. Steele, D. Evans, P. Nolan and D.J. Lloyd, Quantification of grain boundary precipitation and the influence of quench rate in 6XXX aluminum alloys. Mater. Charact. 58 (2007), pp. 40–45. doi: 10.1016/j.matchar.2006.03.007
  • J.D. Evensen, N. Ryum and J.D. Embury, The intergranular fracture of Al-Mg-Si alloys. Mater. Sci. Eng 18 (1975), pp. 221–229. doi: 10.1016/0025-5416(75)90173-1
  • W. Muhammad, U. Ali, A.P. Brahme, J. Kang, R.K. Mishra and K. Inal, Experimental analyses and numerical modeling of texture evolution and the development of surface roughness during bending of an extruded aluminum alloy using a multiscale modeling framework. Int. J. Plast. 117 (2019), pp. 93–121. doi: 10.1016/j.ijplas.2017.09.013
  • W. Muhammad, R.K. Sabat, A.P. Brahme, J. Kang, R.K. Mishra, B. Shalchi-Amirkhiz, J. Hirsch and K. Inal, Deformation banding in a precipitation hardened aluminum alloy during simple shear deformation. Scr. Mater. 162 (2019), pp. 300–305. doi: 10.1016/j.scriptamat.2018.11.032
  • R.K. Sabat, M.V.S.S.D.S. Surya Pavan, D.S. Aakash, M. Kumar and S.K. Sahoo, Mechanism of texture and microstructure evolution during warm rolling of Ti–6Al–4V alloy. Philos. Mag. 98 (2018), pp. 2562–2581. doi: 10.1080/14786435.2018.1493237
  • Y. Zheng, J. Lu, H. Zhang and Z. Chen, Strengthening and toughening by interface-mediated slip transfer reaction in nanotwinned copper. Scripta Mater 60 (2009), pp. 508–511. doi: 10.1016/j.scriptamat.2008.11.039
  • R.L. Fleischer, Cross slip of extended dislocations. Acta Metall. 7 (1959), pp. 134–135. doi: 10.1016/0001-6160(59)90122-1
  • M.S. Duesbery, Dislocation motion, constriction and cross-slip in fcc metals. Model. Simul. Mater. Sci. Eng 6 (1998), pp. 35–49. doi: 10.1088/0965-0393/6/1/005
  • J. Friedel, Dislocations and Mechanical Properties of Crystals, Wiley and Sons, New York, NY, 1957.
  • B. Escaig, Sur le glissement dévié des dislocations dans la structure cubique à faces centrées. J. Phys. France 29 (1968), pp. 225–239. doi: 10.1051/jphys:01968002902-3022500
  • S. Xu, L. Xiong, Y. Chen and D.L. McDowell, Sequential slip transfer of mixed-character dislocations across Σ3 coherent twin boundary in FCC metals: a concurrent atomistic-continuum study. Npj Computational Materials 2 (2016), pp. 1–9. doi: 10.1038/npjcompumats.2015.16
  • M. Chassagne, M. Legros and D. Rodney, Atomic-scale simulation of screw dislocation/coherent twin boundary interaction in Al, Au, Cu and Ni. Acta Mater. 59 (2011), pp. 1456–1463. doi: 10.1016/j.actamat.2010.11.007
  • Z.H. Jin, P. Gumbsch, E. Ma, K. Albe, K. Lu, H. Hahn and H. Gleiter, The interaction mechanism of screw dislocations with coherent twin boundaries in different face-centred cubic metals. Scripta Mater 54 (2006), pp. 1163–1168. doi: 10.1016/j.scriptamat.2005.11.072
  • T. Zhu, J. Li, A. Samanta, H.G. Kim and S. Suresh, Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc. Natl. Acad. Sci. USA 104 (2007), pp. 3031–3036. doi: 10.1073/pnas.0611097104
  • H. Mughrabi, Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metall. 31 (1983), pp. 1367–1379. doi: 10.1016/0001-6160(83)90007-X
  • T. Ungar, H. Mughrabi, M. Wilkens and A. Hilscher, Long-range internal stresses and asymmetric X-ray line-broadening in tensile-deformed [001]-oriented copper single crystals. Philos. Mag. A 64 (1991), pp. 495–496. doi: 10.1080/01418619108221201
  • M. Sauzay, Analytical modelling of intragranular backstresses due to deformation induced dislocation microstructures. Int. J. Plast. 24 (2008), pp. 727–745. doi: 10.1016/j.ijplas.2007.07.004
  • W. Muhammad, A.P. Brahme, J. Kang, R.K. Mishra and K. Inal, Experimental and numerical investigation of texture evolution and the effects of intragranular backstresses in aluminum alloys subjected to large strain cyclic deformation. Int. J. Plast. 93 (2017), pp. 137–163. doi: 10.1016/j.ijplas.2016.11.003
  • R.K. Sabat, S.K. Sahoo, B.D. Bishoyi, N. Bibhanshu and S. Suwas, Improvement in mechanical properties of commercially pure titanium through reverse rolling. Philos. Mag. Lett. 97 (2017), pp. 273–279. doi: 10.1080/09500839.2017.1341647
  • R.K. Sabat, D. Panda and S.K. Sahoo, Growth mechanism of extension twin variants during annealing of pure magnesium: An ‘ex situ’ electron backscattered diffraction investigation. Mater. Charact. 126 (2017), pp. 10–16. doi: 10.1016/j.matchar.2017.02.008
  • B.D. Bishoyi, R.K. Sabat, J. Sahu and S.K. Sahoo, Effect of temperature on microstructure and texture evolution during uniaxial tension of commercially pure titanium. Mater. Sci. Eng., A 703 (2017), pp. 399–412. doi: 10.1016/j.msea.2017.07.081
  • A.S. Argon and Y. Qiao, Resistance of cleavage cracking of high-angle bicrystal grain boundaries in Fe-Si alloy. Philos. Mag. A 82 (2002), pp. 3333–3348.
  • J. Chen and Y. Qiao, Mixed-mode cleavage front branching at a high-angle grain boundary. Scr. Mater. 56 (2007), pp. 1027–1030. doi: 10.1016/j.scriptamat.2007.03.002
  • J. Chen, W. Lu and Y. Qiao, Resistance of grain boundary array to cleavage cracking in free-standing thin film. Mech. Mater. 41 (2009), pp. 131–138. doi: 10.1016/j.mechmat.2008.10.006
  • X. Kong and Y. Qiao, Crack trapping effect of persistent grain boundary islands. Fatigue Fract. Eng. Mater. Struct. 28 (2005), pp. 753–758. doi: 10.1111/j.1460-2695.2005.00908.x
  • Y. Qiao, Modeling of resistance curve of high-angle grain boundary in Fe-3wt%Si alloy. Mater. Sci. Eng., A 361 (2003), pp. 350–357. doi: 10.1016/S0921-5093(03)00534-3
  • Y. Qiao, Irregular-mode cracking in Fe-3wt.%Si alloy. J. Mater. Sci. Technol. 21 (2005a), pp. 338–342.
  • Y. Qiao, The role of recalcitrant grain boundaries in cleavage cracking in Polycrystals. J. Mater. Sci. 40 (2005b), pp. 4819–4825. doi: 10.1007/s10853-005-1909-8
  • Y. Qiao and A.S. Argon, Cleavage cracking resistance of high angle grain boundaries in Fe-3wt%Si alloy. Mech. Mater. 35 (2003a), pp. 313–331. doi: 10.1016/S0167-6636(02)00284-3
  • Y. Qiao and A.S. Argon, Cleavage crack-growth-resistance of grain boundaries in polycrystalline Fe-2wt%Si alloy: experiments and modeling. Mech. Mater. 35 (2003c), pp. 129–154. doi: 10.1016/S0167-6636(02)00194-1
  • W. Lu, S.S. Chakravarthula, J. Chen and Y. Qiao, Propagation of a cleavage crack front across a field of persistent grain boundaries. Int. J. Solids Struct. 49 (2012), pp. 584–589. doi: 10.1016/j.ijsolstr.2011.11.003
  • Y. Qiao and X. Kong, An energy analysis of the grain boundary behavior in cleavage cracking in Fe-3wt.%Si alloy. Mater. Lett. 58 (2004), pp. 3156–3160. doi: 10.1016/j.matlet.2004.05.063

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.