89
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Orientation-dependent microstructure development during high-rate shear deformation of copper

ORCID Icon, , , &
Pages 1499-1518 | Received 28 Oct 2019, Accepted 01 Feb 2020, Published online: 17 Feb 2020

References

  • V.M. Segal, V.I. Reznikov, A.E. Drobyshevskii and V.I. Kopylov, Plastic working of metals by simple shear. Russ. Met 1 (1981), pp. 99–105.
  • R.Z. Valiev, A.V. Korznikov and R.R. Mulyukov, Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater. Sci. Eng. A 168 (1993), pp. 141–148. doi: 10.1016/0921-5093(93)90717-S
  • R.Z. Valiev and T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress Mater. Sci 51 (2006), pp. 881–981. doi: 10.1016/j.pmatsci.2006.02.003
  • R.R. Mulyukov, R.M. Imayev and A.A. Nazarov, Production, properties and application prospects of bulk nanostructured materials. J. Mater. Sci 43 (2008), pp. 7257–7263. doi: 10.1007/s10853-008-2777-9
  • Y. Estrin and A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 61 (2013), pp. 782–817. doi: 10.1016/j.actamat.2012.10.038
  • V.V. Rybin, Large Plastic Deformation and Ductile Failure of Metals, Metallurgiya, Moscow, 1986. ( in Russian).
  • D.A. Hughes and N. Hansen, High angle boundaries formed by grain subdivision mechanisms. Acta Mater. 45 (1997), pp. 3871–3886. doi: 10.1016/S1359-6454(97)00027-X
  • O. Johari and G. Thomas, Substructures in explosively deformed Cu and Cu-Al alloys. Acta Metall. 12 (1964), pp. 1153–1159. doi: 10.1016/0001-6160(64)90095-1
  • Y. Xu, J. Zhang, Y. Bai and M.A. Meyers, Shear localization in dynamic deformation: Microstructural evolution. Metall. Mater. Trans. A 39A (2008), pp. 811–843. doi: 10.1007/s11661-007-9431-z
  • V.V. Rybin, N.Y. Zolotorevsky and E.A. Ushanova, Analysis of the misoriented structures in the model copper–copper compound formed by explosion welding. Tech. Phys. 59 (2014), pp. 1819–1832. doi: 10.1134/S106378421412024X
  • F. Zhao, L. Wang, D. Fan, B.X. Bie, X.M. Zhou, T. Suo, Y.L. Li, M.W. Chen, C.L. Liu, M.L. Qi, M.H. Zhu and S.N. Luo, Macrodeformation twins in single-crystal aluminium. Phys. Rev. Lett. 116 (2016), pp. 075501. doi: 10.1103/PhysRevLett.116.075501
  • N.Y. Zolotorevsky, V.V. Rybin, E.A. Ushanova, I.G. Brodova, A.N. Petrova and N.Y. Ermakova, Twinning in polycrystalline aluminium deformed by dynamic channel angular pressing. Lett. Mater. 4 (2017), pp. 363–366. doi: 10.22226/2410-3535-2017-4-363-366
  • C.X. Huang, K. Wang, S.D. Wu, Z.F. Zhang, G.Y. Li and S.X. Li, Deformation twinning in polycrystalline copper at room temperature and low strain rate. Acta Mater. 54 (2006), pp. 655–665. doi: 10.1016/j.actamat.2005.10.002
  • H. Miyamoto, A. Vinogradov, S. Hashimoto and R. Yoda, Formation of deformation twins and related shear bands in a copper single crystal deformed by equal-channel angular pressing for one pass at room temperature. Mater. Trans 50 (2009), pp. 1924–1929. doi: 10.2320/matertrans.M2009054
  • I.V. Khomskaya, V.I. Zel’dovich, E.V. Shorokhov, N.Y. Frolova, I.N. Zhgilev and A.E. Kheifets, Structure formation in copper during dynamic channel-angular pressing. Phys. Met. Metall. 105 (2008), pp. 586–593. doi: 10.1134/S0031918X08060094
  • V.I. Zel’dovich, E.V. Shorokhov, N.Y. Frolova, I.N. Zhgilev, A.E. Kheifets and I.V. Khomskaya, High-speed deformation of titanium during dynamic equal-channel angular pressing. Int. J. Mater. Res 100 (2009), pp. 830–833. doi: 10.3139/146.110098
  • I.G. Brodova, E.V. Shorokhov, A.N. Petrova, I.G. Shirinkina, I.V. Minaev, I.N. Zhgilev and A.V. Abramov, Fragmentation of the structure in Al-based alloys upon high speed effect. Rev. Adv. Mater. Sci 25 (2010), pp. 128–135.
  • I.V. Khomskaya, E.V. Shorokhov, V.I. Zel’dovich, A.E. Kheifets, N.Y. Frolova, P.A. Nasonov, A.A. Ushakov and I.N. Zhgilev, Study of the structure and mechanical properties of submicrocrystalline and nanocrystalline copper produced by high-rate pressing. Phys. Met. Metall. 111 (2011), pp. 612–622. doi: 10.1134/S0031918X11050097
  • Y.S. Li, N.R. Tao and K. Lu, Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures. Acta Mater. 56 (2008), pp. 230–241. doi: 10.1016/j.actamat.2007.09.020
  • T.L. Brown, C.H. Saldana, T.G. Murthy, J.B. Mann, Y. Guo, L.F. Allard, A.H. King, W.D. Compton, K.P. Trumble and S. Chandrasekar, A study of the interactive effects of strain, strain rate and temperature in severe plastic deformation of copper. Acta Mater. 57 (2009), pp. 5491–5500. doi: 10.1016/j.actamat.2009.07.052
  • V.V. Rybin, N.Y. Zolotorevsky, E.A. Ushanova, S.N. Sergeev, A.N. Matvienko, I.V. Khomskaya and D.A. Abdullina, Main patterns of lattice fragmentation in copper processed by dynamic equal-channel angular pressing. Rev. Adv. Mater. Sci. 52 (2017), pp. 54–60.
  • D.P. Field and H. Weiland, Characterization of deformed microstructures, in Electron Backscatter Diffraction in Materials Science, A.J. Schwartz, M. Kumar, B.L. Adams, eds., Plenum Press, New York, 2000. pp. 199–212.
  • F. Bachmann, R. Hielscher and H. Schaeben, Grain detection from 2d and 3d EBSD data - Specification of the MTEX algorithm. Ultramicroscopy 111 (2011), pp. 1720–1733. doi: 10.1016/j.ultramic.2011.08.002
  • Y. Iwahashi, M. Furukava, Z. Horita, M. Nemoto and T.G. Langdon, Microstructural characteristics of ultrafine-grained aluminum produced using equal-channel angular pressing. Metal. Mater. Trans. A 29A (1998), pp. 2245–2252. doi: 10.1007/s11661-998-0102-5
  • C. Gu, L.S. Tóth, B. Beausir, T. Williams and C.H.J. Davies, Grain fragmentation in equal channel angular pressed copper. Mater. Sci. Forum 654-656 (2010), pp. 1570–1573. doi: 10.4028/www.scientific.net/MSF.654-656.1570
  • L.S. Toth, R. Arruffat-Massion, L. Germain, Analysis of texture evolution in equal channel angular extrusion of copper using a new flow field. Acta Mater. 52 (2004), pp. 1885–1898. doi: 10.1016/j.actamat.2003.12.027
  • I.J. Beyerlein, L.S. Tóth, C.N. Tomé and S. Suwas, Role of twinning on texture evolution of silver during equal channel angular extrusion. Philos. Mag 87 (2007), pp. 885–906. doi: 10.1080/14786430601003866
  • F.H. Dalla Torre, A.A. Gazder, E.V. Pereloma and C.H.J. Davies, Recent progress on the study of the microstructure and mechanical properties of ECAE copper. J Mater. Sci 42 (2007), pp. 9097–9111. doi: 10.1007/s10853-006-1261-7
  • F.J. Humphreys, Grain and subgrain characterisation by electron backscatter diffraction. J. Mater. Sci 36 (2001), pp. 3833–3854. doi: 10.1023/A:1017973432592
  • I.J. Beyerlein and L.S. Toth, Texture evolution in equal-channel angular extrusion. Progress in Mater. Sci 54 (2009), pp. 427–510. doi: 10.1016/j.pmatsci.2009.01.001
  • L.S. Toth, R. Lapovok, A. Hasani and C. Gu, Non-equal channel angular pressing of aluminum alloy. Scr. Mater 61 (2009), pp. 1121–1124. doi: 10.1016/j.scriptamat.2009.09.006
  • I.J. Beyerlein, R.A. Lebensohn and C.N. Tomé, Modeling texture and microstructural evolution in the equal channel angular extrusion process. Mater. Sci. and Eng A345 (2003), pp. 122–138. doi: 10.1016/S0921-5093(02)00457-4
  • S. Li, I.J. Beyerlein, D.J. Alexander and S.C. Vogel, Texture evolution during multi-pass equal channel angular extrusion of copper: Neutron diffraction characterization and polycrystal modeling. Acta Mater. 53 (2005), pp. 2111–2125. doi: 10.1016/j.actamat.2005.01.023
  • Y. Huang and P.B. Prangnell, Orientation splitting and its contribution to grain refinement during equal channel angular extrusion. J. Mater. Sci 43 (2008), pp. 7273–7279. doi: 10.1007/s10853-008-2623-0
  • L. Zhu, M. Seefeldt and B. Verlinden, Three Nb single crystals processed by equal-channel angular pressing – part II: mesoscopic bands. Acta Mater. 61 (2013), pp. 4504–4511. doi: 10.1016/j.actamat.2013.04.019
  • H. Miyamoto, U. Erb, T. Koyama, T. Mimaki, A. Vinogradov and S. Hashimoto, Microstructure and texture development of copper single crystals deformed by equal-channel angular pressing. Philos. Mag. Lett 84 (2004), pp. 235–243. doi: 10.1080/09500830410001663734
  • D. Goran, J.J. Fundenberger, E. Bouzy, W. Skrotzki, S. Suwas, T. Grosdidier and L.S. Tóth, Local texture and microstructure in cube-oriented nickel single crystal deformed by equal channel angular extrusion. Philos. Mag 91 (2011), pp. 281–299. doi: 10.1080/14786435.2010.519352
  • B.J. Duggan, M. Hatherly, W.B. Hutchinson and P.T. Wakefield, Deformation structures and textures in cold-rolled 70:30 brass. Metal. Sci 12 (1978), pp. 343–351. doi: 10.1179/030634578790433909
  • I.L. Dillamore, J.G. Roberts and A.C. Bush, Occurrence of shear bands in heavily rolled cubic metals. Metal. Sci. 13 (1979), pp. 73–77. doi: 10.1179/msc.1979.13.2.73
  • M.A. Meyers, O. Vöhringer and V.A. Lubarda, The onset of twinning in metals: a constitutive description. Acta Mater. 49 (2001), pp. 4025–4039. doi: 10.1016/S1359-6454(01)00300-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.