91
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effect of Zr concentration on the mechanical and thermodynamic properties of NbIr3 intermetallic compounds from theoretical estimations

, &
Pages 1550-1568 | Received 03 Jun 2019, Accepted 19 Jan 2020, Published online: 19 Feb 2020

References

  • Y. Pan and C. Jin, Vacancy-induced mechanical and thermodynamic properties of B2-RuAl. Vacuum 143 (2017), pp. 165–168. doi: 10.1016/j.vacuum.2017.06.013
  • Y. Pan, S.L. Wang and C.M. Zhang, Ab-initio investigation of structure and mechanical properties of PtAlTM ternary alloy. Vacuum 151 (2018), pp. 205–208. doi: 10.1016/j.vacuum.2018.02.027
  • M.J. Cawkwell, D. Nguyen-Manh, C. Woodward, D.G. Pettifor and V. Vitek, Origin of brittle cleavage in iridium. Science 309 (2005), pp. 1059–1062. doi: 10.1126/science.1114704
  • K. Chen, L.R. Zhao and J.S. Tse, Ab initio study of elastic properties of Ir and Ir3X compounds. J. Appl. Phys 93 (2003), pp. 2414–2417. doi: 10.1063/1.1540742
  • L.A. Cornish, B. Fischer and R. Völkl, Development of platinum-group-metal superalloys for high-temperature use. MRS Bull. 28 (2011), pp. 632–638. doi: 10.1557/mrs2003.190
  • H.R. Gong, Ideal mechanical strength and interface cohesion property of Ir-base superalloys from first principles calculation. Mater. Chem. Phys 126 (2011), pp. 284–288. doi: 10.1016/j.matchemphys.2010.11.025
  • Y. Gu, Y. Yamabe-Mitarai, Y. Ro, T. Yokokawa, and H. Harada, Influence of Ni addition on mechanical properties and fracture behaviors of Ir-15Nb two-phase refractory superalloys, Mrs Pro. 552 (2011), p. KK7.10.1.
  • V. Stevanović, Ž Šljivančanin and A. Baldereschi, Effect of carbon adsorption on the isomer stability of Ir4 clusters. Phys. Rev. Lett 99 (2007), p. 165501. doi: 10.1103/PhysRevLett.99.165501
  • Y. Pan and M. Wen, The influence of vacancy on the mechanical properties of IrAl coating: First-principles calculations. Thin Solid Films 664 (2018), pp. 46–51. doi: 10.1016/j.tsf.2018.08.028
  • S. Miura, K. Ohkubo, Y. Terada, Y. Kimura, Y. Mishima, Y. Yamabe-Mitarai, H. Harada and T. Mohri, Phase equilibria in Ir-rich portion of Ir–Al–X (X: V, Nb and Ta) ternary systems. J. Alloys Compd 395 (2005), pp. 263–271. doi: 10.1016/j.jallcom.2004.11.029
  • C. Paduani, Electronic properties of the A-15 Nb-based intermetallics Nb3 (Os, Ir, Pt, Au). Solid State Commun. 144 (2007), pp. 352–356. doi: 10.1016/j.ssc.2007.07.030
  • M. Grimsditch, K.E. Gray, R. Bhadra, R.T. Kampwirth and L.E. Rehn, Brillouin scattering study of lattice-stiffness changes due to ion irradiation: Dramatic softening in Nb3Ir. Phys. Rev. B 35 (1987), pp. 883–885. doi: 10.1103/PhysRevB.35.883
  • X. Li, D. Chen, Y. Wu, M. Wang, N. Ma and H. Wang, Assessment on the structural, elastic and electronic properties of Nb3Ir and Nb3Pt: A first-principles study. AIP. Adv. 7 (2017), p. 065012. doi: 10.1063/1.4986906
  • C. Paduani, Structural and electronic properties of the A-15 compounds Nb3Rh and Nb3Ir. Physica B 393 (2007), pp. 105–109. doi: 10.1016/j.physb.2006.12.051
  • Y. Pan, Y. Li and Q. Zheng, Influence of Ir concentration on the structure, elastic modulus and elastic anisotropy of Nb-Ir based compounds from first-principles calculations. J. Alloys Compd 789 (2019), pp. 860–866. doi: 10.1016/j.jallcom.2019.03.083
  • Y.F. Gu, Y. Yamabe-Mitarai and H. Harada, Ultra-high-temperature deformation of polycrystalline and directionally solidified L12 intermetallic compound Ir3Nb. Intermetallics 11 (2003), pp. 57–62. doi: 10.1016/S0966-9795(02)00165-6
  • Y. Yamabe-Mitarai and H. Harada, First trial of pulse electric current sintering for high-temperature material Ir3Nb. J. Mater. Eng. Perform 10 (2001), pp. 685–692. doi: 10.1361/105994901770344557
  • Y. Yamabe-Mitarai, Y. Ro and S. Nakazawa, Temperature dependence of the flow stress of Ir-based L12 intermetallics. Intermetallics 9 (2001), pp. 423–429. doi: 10.1016/S0966-9795(01)00021-8
  • Y. Yamabe-Mitari, Y. Ro, T. Maruko and H. Harada, Microstructure dependence of strength of Ir-base refractory superalloys. Intermetallics 7 (1999), pp. 49–58. doi: 10.1016/S0966-9795(98)00010-7
  • K.S. Chan, Tensile ductility of extrinsically toughened intermetallics. Metall. Mater. Trans. A 25 (1994), pp. 299–308. doi: 10.1007/BF02647975
  • Y.F. Gu, Y. Yamabe-Mitarai, Y. Ro and H. Harada, The JIM Fall Meeting, JIM, Japan, 2001, p. 326.
  • C. Huang, Y. Yamabe-Mitarai, K. Nishida and H. Harada, Phase constituents of Ir–Nb–Pt–Al quaternary alloys. Intermetallics 11 (2003), pp. 917–926. doi: 10.1016/S0966-9795(03)00104-3
  • X.H. Yu, Y. Yamabe-Mitarai, S. Nakazawa, Y. Ro and H. Harada, Drastically improved ductility of an Ir-base alloy by mixing Ir–Nb with Ni–Al. Mat. Sci. Eng. A 329–331 (2002), pp. 481–485. doi: 10.1016/S0921-5093(01)01624-0
  • X.H. Yu, Y. Yamabe-Mitarai, Y. Ro and H. Harada, Design of quaternary Ir–Nb–Ni–Al refractory superalloys. Metall. Mater. Trans. A 31 (2000), pp. 173–178. doi: 10.1007/s11661-000-0063-9
  • J.B. Sha, Y. Yamabe-Mitarai and H. Harada, Microstructural evaluation and mechanical properties of Ir–Hf–Zr ternary alloys at room and high temperatures. Intermetallics 14 (2006), pp. 1364–1369. doi: 10.1016/j.intermet.2005.11.030
  • Y. Yamabe-Mitarai, Y. Gu, H. Harada and C. Huang, Compressive creep properties of Ir-base refractory superalloys. Metall. Mater. Trans. A 36 (2005), pp. 547–557. doi: 10.1007/s11661-005-0169-1
  • C. Huang, Y. Yamabe-Mitarai and H. Harada, Morphology evolution of Ir–X–Al (X = Nb or Zr) ternary alloys. Mater. Lett 62 (2008), pp. 1287–1290. doi: 10.1016/j.matlet.2007.08.032
  • V.N. Eremenko, V.G. Khoruzhaya and T.D. Shtepa, Structure of alloys and diagram of phase equilibria of the Zr–Ru–Ir system. I. Projection of the solidus surface of the partial system Ru–ZrRu–ZrIr–Ir. Sov. Powder Metall. Met. Ceram 24 (1985), pp. 296–301. doi: 10.1007/BF00805225
  • B.C. Giessen, R. Koch, and N.J. Grant, The niobium (columbium) – iridium constitution diagram. Trans. Met. Soc. AIME 230 (1964), pp. 69–70.
  • Y. Yamabe-Mitarai and H. Harada, Face centered cubic and L12 two-phase structure of Ir–Nb–Zr alloys. J. Alloys Compd 361 (2003), pp. 169–179. doi: 10.1016/S0925-8388(03)00422-5
  • G.D. Zhou, X.Z. Ye, N.Z. Wu and C.E. Survey, Chemical elements survey, Science Press, Beijing, 2012.
  • F. Guo and Y. Zhan, Distribution trends and influence of 4d transition metal elements (Ru, Rh and Pd) doping on mechanical properties and martensitic transformation temperature of B2–ZrCu phase. J. Phys. Chem. Solids 111 (2017), pp. 372–382. doi: 10.1016/j.jpcs.2017.08.026
  • G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54 (1996), pp. 11169–11186. doi: 10.1103/PhysRevB.54.11169
  • G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59 (1999), pp. 1758–1775. doi: 10.1103/PhysRevB.59.1758
  • J.P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett 77 (1996), pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • Q.J. Liu, N.C. Zhang, F.S. Liu and Z.T. Liu, Structural, mechanical and electronic properties of OsTM and TMOs2 (TM = Ti, Zr and Hf): First-principles calculations. J. Alloys Compd 589 (2014), pp. 278–282. doi: 10.1016/j.jallcom.2013.11.215
  • J. Ning, X. Zhang, X. Huang, N. Sun, M. Ma and R. Liu, Structural, elastic, electronic, and thermodynamic properties of intermetallic Zr2Cu: A first-principles study. Intermetallics 54 (2014), pp. 7–14. doi: 10.1016/j.intermet.2014.04.021
  • A.V. Ruban and H.L. Skriver, Calculated site substitution in ternary γIH–Ni3Al: Temperature and composition effects. Phys. Rev. B 55 (1997), pp. 856–874. doi: 10.1103/PhysRevB.55.856
  • O. Beckstein, J.E. Klepeis, G.L.W. Hart and O. Pankratov, First-principles elastic constants and electronic structure of α−Pt2Si and PtSi. Phys. Rev. B 63 (2001), p. 134112. doi: 10.1103/PhysRevB.63.134112
  • Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu and J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 76 (2007), p. 054115. doi: 10.1103/PhysRevB.76.054115
  • R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc 65 (1952), pp. 349–354. doi: 10.1088/0370-1298/65/5/307
  • S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. A 45 (1954), pp. 823–843. doi: 10.1080/14786440808520496
  • B.C. Giessen and N.J. Grant, New intermediate phases in system of Nb or Ta with Rh, Ir, Pd, or Pt. Acta Crystallogr. 17 (1964), pp. 615–616. doi: 10.1107/S0365110X64001438
  • S.I. Ranganathan and M. Ostoja-Starzewski, Universal elastic anisotropy index. Phys. Rev. Lett 101 (2008), p. 055504. doi: 10.1103/PhysRevLett.101.055504
  • N. Guechi, A. Bouhemadou, R. Khenata, S. Bin-Omran, M. Chegaar, Y. Al-Douri and A. Bourzami, Structural, elastic, electronic and optical properties of the newly synthesized monoclinic Zintl phase BaIn2P2. Solid State Sci. 29 (2014), pp. 12–23. doi: 10.1016/j.solidstatesciences.2014.01.001
  • A. Otero-de-la-Roza, D. Abbasi-Pérez and V. Luaña, Gibbs2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput. Phys. Commun 182 (2011), pp. 2232–2248. doi: 10.1016/j.cpc.2011.05.009
  • J. Long, C. Shu, L. Yang and M. Yang, Predicting crystal structures and physical properties of novel superhard p-BN under pressure via first-principles investigation. J. Alloys Compd 644 (2015), pp. 638–644. doi: 10.1016/j.jallcom.2015.04.229
  • H. Chen and W. Tian, First-principles investigation of the physical properties of cubic and orthorhombic phase Na3UO4. Physica B 524 (2017), pp. 144–148. doi: 10.1016/j.physb.2017.08.052
  • E. Deligoz, H. Ozisik and H.B. Ozisik, Calculation of the stability and mechanical and phonon properties of NbRuB, TaRuB, and NbOsB compounds. Philos. Mag 99 (2019), pp. 328–346. doi: 10.1080/14786435.2018.1539564
  • Y. Pan, S. Wang, X. Zhang and L. Jia, First-principles investigation of new structure, mechanical and electronic properties of Mo-based silicides. Ceram. Int 44 (2018), pp. 1744–1750. doi: 10.1016/j.ceramint.2017.10.106
  • Y. Terada, K. Ohkubo, S. Miura, J.M. Sanchez and T. Mohri, Thermal conductivity and thermal expansion of Ir3X (X = Ti, Zr, Hf, V, Nb, Ta) compounds for high-temperature applications. Mater. Chem. and Phys 80 (2003), pp. 385–390. doi: 10.1016/S0254-0584(02)00109-8
  • A.M. Gyurko and J.M. Sanchez, Characterization of mechanical properties in the Ir–Nb–Zr intermetallic system. Mat. Sci. Eng. A 170 (1993), pp. 169–175. doi: 10.1016/0921-5093(93)90378-R
  • G.L.W. Hart, S. Curtarolo, T.B. Massalski, and O. Levy, A high-throughput ab initio review of platinum-group alloy systems, preprint (2013). Available at https://arxiv.org/pdf/1308.4357.pdf.
  • J. Wu, B. Zhang and Y. Zhan, Ab initio investigation into the structure and properties of Ir–Zr intermetallics for high-temperature structural applications. Comput. Mat. Sci 131 (2017), pp. 146–159. doi: 10.1016/j.commatsci.2017.01.047
  • S. Liu, Y. Zhan, J. Wu and X. Wei, Insight into structural, mechanical, electronic and thermodynamic properties of intermetallic phases in Zr–Sn system from first-principles calculations. J. Phys. Chem. Solids 86 (2015), pp. 177–185. doi: 10.1016/j.jpcs.2015.07.009
  • A.G. Van Der Geest and A.N. Kolmogorov, Stability of 41 metal–boron systems at 0 and 30 GPa from first principles. Calphad 46 (2014), pp. 184–204. doi: 10.1016/j.calphad.2014.03.005
  • N. Liu, X. Wang and Y. Wan, First principle calculations of elastic and thermodynamic properties of Ir3Nb and Ir3V with L12 structure under high pressure. Intermetallics 66 (2015), pp. 103–110. doi: 10.1016/j.intermet.2015.06.024
  • H.R. Gong, Ideal mechanical strengths of Ir and Ir3Zr. Scripta Mater 59 (2008), pp. 1197–1199. doi: 10.1016/j.scriptamat.2008.08.009
  • N. Liu, X. Wang and Y. Wan, First principles calculations of structural, elastic, electronic properties of Ir3Zr with L12 structure under high pressure. Mater. Chem. Phys 162 (2015), pp. 807–812. doi: 10.1016/j.matchemphys.2015.07.007
  • U.F. Ozyar, E. Deligoz and K. Colakoglu, Systematic study on the anisotropic elastic properties of tetragonal XYSb (X = Ti, Zr, Hf; Y = Si, Ge) compounds. Solid State Sci. 40 (2015), pp. 92–100. doi: 10.1016/j.solidstatesciences.2015.01.001
  • G. Yi, X. Zhang, J. Qin, J. Ning, S. Zhang, M. Ma and R. Liu, Mechanical, electronic and thermal properties of Cu5Zr and Cu5Hf by first-principles calculations. J. Alloys Compd 640 (2015), pp. 455–461. doi: 10.1016/j.jallcom.2015.03.198
  • Y. Pan and W.M. Guan, Probing the balance between ductility and strength: Transition metal silicides. Phys. Chem. Chem. Phys 19 (2017), pp. 19427–19433. doi: 10.1039/C7CP03182C
  • D.G. Pettifor, Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol 8 (1992), pp. 345–349. doi: 10.1179/mst.1992.8.4.345
  • Y. Wu and W. Hu, Elastic and brittle properties of the B2-MgRE (RE = Sc, Y, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er) intermetallics. Eur. Phys. J. B 60 (2007), pp. 75–81. doi: 10.1140/epjb/e2007-00323-0
  • V.V. Bannikov, I.R. Shein and A.L. Ivanovskii, Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN3. Phys. Status Solidi (RRL) – Rapid Res. Lett 1 (2007), pp. 89–91. doi: 10.1002/pssr.200600116
  • M. Mattesini, M. Magnuson, F. Tasnadi, C. Hoglund, I.A. Abrikosov and L. Hultman, Elastic properties and electrostructural correlations in ternary scandium-based cubic inverse perovskites: A first-principles study. Phys. Rev. B 79 (2009), p. 125122. doi: 10.1103/PhysRevB.79.125122
  • A.J. Hong, J.J. Gong, L. Li, Z.B. Yan, Z.F. Ren and J.M. Liu, Predicting high thermoelectric performance of ABX ternary compounds NaMgX (X = P, Sb, As) with weak electron–phonon coupling and strong bonding anharmonicity. J. Mater. Chem. C 4 (2016), pp. 3281–3289. doi: 10.1039/C6TC00461J
  • D.V. Korabelnikov and Y.N. Zhuravlev, Ab initio investigations of the elastic properties of chlorates and perchlorates. Phys. Solid State 58 (2016), pp. 1166–1171. doi: 10.1134/S1063783416060251
  • Y. Pan, P. Wang and C.M. Zhang, Structure, mechanical, electronic and thermodynamic properties of Mo5Si3 from first-principles calculations. Cream. Int 44 (2018), pp. 12357–12362. doi: 10.1016/j.ceramint.2018.04.023
  • Y.H. Duan, B. Huang, Y. Sun, M.J. Peng and S.G. Zhou, Stability, elastic properties and electronic structures of the stable Zr–Al intermetallic compounds: A first-principles investigation. J. Alloys Compd 590 (2014), pp. 50–60. doi: 10.1016/j.jallcom.2013.12.079
  • T. Tohei, A. Kuwabara, F. Oba and I. Tanaka, Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations. Phys. Rev. B 73 (2006), p. 064304. doi: 10.1103/PhysRevB.73.064304
  • H. Han, Density-functional theory study of the effect of pressure on the elastic properties of CaB6. Chinese Phys. B 22 (2013), p. 077101. doi: 10.1088/1674-1056/22/7/077101

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.