743
Views
7
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Spin–lattice relaxation phenomena in the magnetic state of a suggested Weyl semimetal CeAlGe

& ORCID Icon
Pages 1771-1787 | Received 22 Aug 2019, Accepted 06 Feb 2020, Published online: 19 Feb 2020

References

  • M.Z. Hasan and C.L. Kane, Colloquium: topological insulators. Rev. Mod. Phys. 82 (2010), pp. 3045. doi: 10.1103/RevModPhys.82.3045
  • X.L. Qi and S.C. Zhang, Topological insulators and superconductors. Rev. Mod. Phys. 83 (2011), pp. 1057. doi: 10.1103/RevModPhys.83.1057
  • D.T. Son and B.Z. Spivak, Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88 (2013), pp. 104412. doi: 10.1103/PhysRevB.88.104412
  • L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J.D. Joannopoulos and M. Soljacic, Experimental observation of Weyl points. Science 349 (2013), pp. 622. doi: 10.1126/science.aaa9273
  • B. Yan and S.C. Zhang, Topological materials. Rep. Prog. Phys. 75 (2012), pp. 096501. doi: 10.1088/0034-4885/75/9/096501
  • B. Yan and C. Felser, Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8 (2017), pp. 337. doi: 10.1146/annurev-conmatphys-031016-025458
  • K. Fujikawa, Path-integral measure for gauge-invariant fermion theories. Phys. Rev. Lett. 42 (1979), pp. 1195. doi: 10.1103/PhysRevLett.42.1195
  • S. Murakami, Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J. Phys. 9 (2007), pp. 356. doi: 10.1088/1367-2630/9/9/356
  • F.D.M. Haldane, Berry curvature on the Fermi surface: anomalous Hall effect as a topological Fermi-liquid property. Phys. Rev. Lett. 93 (2004), pp. 206602. doi: 10.1103/PhysRevLett.93.206602
  • A.A. Burkov, Quantum anomalies in nodal line semimetals. Phys. Rev. B 97 (2018), pp. 165104. doi: 10.1103/PhysRevB.97.165104
  • C. Fang, L. Lu, J. Liu and L. Fu, Topological semimetals with helicoid surface states. Nat. Phys. 12 (2016), pp. 936. doi: 10.1038/nphys3782
  • X. Wan, A.M. Turner, A. Vishwanath and S.Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore Iridates. Phys. Rev. B 83 (2011), pp. 205101. doi: 10.1103/PhysRevB.83.205101
  • Z. Song, T. Zhang and C. Fang, Diagnosis for nonmagnetic topological semimetals in the absence of spin-orbital coupling. Phys. Rev. X 8 (2018), pp. 031069.
  • S. Dzsaber, L. Prochaska, A. Sidorenko, G. Eguchi, R. Svagera, M. Waas, A. Prokofiev, Q. Si and S. Paschen, Kondo insulator to semimetal transformation tuned by spin-orbit coupling. Phys. Rev. Lett. 118 (2017), pp. 246601. doi: 10.1103/PhysRevLett.118.246601
  • G.P. Mikitik and Y.V. Sharlai, Magnetic susceptibility of topological nodal semimetals. Phys. Rev. B 94 (2016), pp. 195123. doi: 10.1103/PhysRevB.94.195123
  • C. Guo, C. Cao, M. Smidman, F. Wu, Y. Zhang, F. Steglich, F.C. Zhang and H. Yuan, Possible Weyl fermion in the magnetic Kondo system CeSb. npj Quantum Mater. 39 (2017), pp. 2.
  • H.H. Lai, S.E. Grefe, S. Paschen and Q. Si, Weyl-Kondo semimetal in heavy-fermion systems. Proc. Natl Acad. Sci. USA 115 (2018), pp. 93. doi: 10.1073/pnas.1715851115
  • L.M. Schoop, A. Topp, J. Lippmann, F. Orlandi, L. Muchler, M.G. Vergniory, Y. Sun, A.W. Rost, V. Duppel, M. Krivenkov, S. Sheoran, P. Manuel, A. Varykhalov, B. Yan, R.K. Kremer, C.R. Ast and B.V. Lotsch, Tunable Weyl and Dirac states in the nonsymmorphic compound CeSbTe. Sci. Adv. 4 (2018), pp. 2317. doi: 10.1126/sciadv.aar2317
  • Q. Wang, Y. Xu, R. Lou, Z. Liu, M. Li, Y. Huang, D. Shen, H. Weng, S. Wang and H. Kei, Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Nat. Commun. 9 (2018), pp. 3681. doi: 10.1038/s41467-018-06088-2
  • G. Chang, S.Y. Xu, X. Zhou, S.M. Huang, B. Singh, B. Wang, I. Belopolski, J. Yin, S. Zhang, A. Bansil, H. Lin and M.Z. Hasan, Topological Hopf and chain link semimetal states and their application to Co2MnGa. Phys. Rev. Lett. 119 (2017), pp. 156401. doi: 10.1103/PhysRevLett.119.156401
  • M.A. Kassem, Y. Tabata, T. Waki and H. Nakamura, Low-field anomalous magnetic phase in the kagome-lattice shandite Co3Sn2S2. Phys. Rev. B. 96 (2017), pp. 014429. doi: 10.1103/PhysRevB.96.014429
  • D. Gresch, Q.S. Wu, G.W. Winkler and A.A. Soluyanov, Hidden Weyl points in centrosymmetric paramagnetic metals. New J. Phys. 19 (2017), pp. 035001. doi: 10.1088/1367-2630/aa5de7
  • J.H. Oh, K.J. Lee, H.W. Lee and M. Shin, Effects of Rashba and Dresselhaus spin-orbit interactions on the ground state of two-dimensional localized spins. J. Phys.: Condens. Matter 26 (2014), pp. 196005.
  • M. Kawano, Y. Onose and C. Hotta, Designing Rashba-Dresselhaus effect in magnetic insulators. Commun. Phys. 2 (2019), pp. 27. doi: 10.1038/s42005-019-0128-6
  • A. Manchon, H.C. Koo, J. Nitta, S.M. Frolov and R.A. Duine, New perspectives for Rashba spin-orbit coupling. Nat. Mater. 14 (2015), pp. 871. doi: 10.1038/nmat4360
  • H. Flandorfer, D. Kaczorowski, J. Grobner, P. Rogl, R. Wouters, C. Godart and A. Kostikas, The systems Ce-Al-(Si, Ge): phase equilibria and physical properties. J. Solid State Chem. 137 (1998), pp. 191. doi: 10.1006/jssc.1997.7660
  • G. Chang, B. Singh, S.Y. Xu, G. Bian, S.M. Huang, C.H. Hsu, I. Belopolski, N. Alidoust, D.S. Sanchez, H. Zheng, H. Lu, X. Zhang, Y. Bian, T.R. Chang, H.T. Jeng, A. Bansil, H. Hsu, S. Jia, T. Neupert, H. Lin and M.Z. Hasan, Magnetic and noncentrosymmetric Weyl fermion semimetals in the RAlGe family of compounds (R = rare earth). Phys. Rev. B 97 (2018), pp. 041104(R). doi: 10.1103/PhysRevB.97.041104
  • H. Hodovanets, C.J. Eckberg, P.Y. Zavalij, H. Kim, W.C. Lin, M. Zic, D.J. Campbell, J.S. Higgins and J. Paglione, Single-crystal investigation of the proposed type-II Weyl semimetal CeAlGe. Phys. Rev. B 98 (2018), pp. 245132. doi: 10.1103/PhysRevB.98.245132
  • P. Puphal, C. Mielke, N. Kumar, Y. Soh, T. Shang, M. Medarde, J.S. White and E. Pomjakushina, Bulk single-crystal growth of the theoretically predicted magnetic Weyl semimetal RAlGe (R = Pr, Ce). Phys. Rev. Mat. 3 (2019), pp. 024204.
  • T. Suzuki, L. Savary, J.P. Liu, J.W. Lynn, L. Balents and J.G. Checkelsky, Singular angular magnetoresistance in a magnetic nodal semimetal. Science 365 (2019), pp. 377. doi: 10.1126/science.aat0348
  • K. Kuroda, T. Tomita, M.T. Suzuki, C. Bareille, A.A. Nugroho, P. Goswami, M. Ochi, M. Ikhlas, M. Nakayama, S. Akebi, R. Noguchi, R. Ishii, N. Inami, K. Ono, H. Kumigashira, A. Varykhalov, T. Muro, T. Koretsune, R. Arita, S. Shin, T. Kondo and S. Nakatsuji, Evidence for magnetic Weyl fermion in a correlated metal. Nat. Mater. 16 (2017), pp. 1090. doi: 10.1038/nmat4987
  • B.K. Lee, D.H. Ryu, D.Y. Kim, J.B. Hong, M.H. Jung, H. Kitazawa, O. Suzuki, S. Kimura and Y.S. Kwon, Magnetic ordering in frustrated Ce5Ni2Si3. Phys. Rev. B 70 (2004), pp. 224409. doi: 10.1103/PhysRevB.70.224409
  • J.A. Mydosh, Disordered magnetism and spin glasses. J. Magn. Magn. Mater. 157 (1996), pp. 606. doi: 10.1016/0304-8853(95)01272-9
  • M. Balanda, AC susceptibility studies of phase transitions and magnetic relaxation: conventional, molecular and low-dimensional magnets. Acta Phys. Pol. A 124 (2013), pp. 964. doi: 10.12693/APhysPolA.124.964
  • I. Tudosa, Spin-orbit coupling of conduction electrons in magnetization. Available at arXiv, 1702.07153v1.
  • F. Arnold, C. Shekhar, S.C. Wu, Y. Sun, R. Donizeth dos Reis, N. Kumar, M. Naumann, M.O. Ajeesh, M. Schmidt, A.G. Grushin, J.H. Bardarson, M. Baenitz, D. Sokolov, H. Borrmann, M. Nicklas, C. Felser, E. Hassinger and B. Yan, Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP. Nat. Commun. 7 (2016), pp. 11615. doi: 10.1038/ncomms11615
  • S.T. Guo, R. Sankar, Y.Y. Chien, T.R. Chang, H.T. Jeng, G.Y. Guo, F.C. Chou and W.L. Lee, Large transverse Hall-like signal in topological Dirac semimetal Cd3As2. Sci. Rep. 6 (2016), pp. 27487. doi: 10.1038/srep27487
  • O. lvanov, V. Zakhvalinskii, T. Nikulicheva, M. Yaprintsev and S. lvanichikhin, Asymmetry and parity violation in magnetoresistance of magnetic diluted Dirac-Weyl semimetal (Cd0.6Zn0.36Mn0.04)3As2. Phys. Status Solidi RRL 12 (2018), pp. 1800286.
  • R. Karplus and J.M. Luttinger, Hall effect in ferromagnetics. Phys. Rev. B 95 (1954), pp. 1154. doi: 10.1103/PhysRev.95.1154
  • J.M. Luttinger, Theory of the Hall effect in ferromagnetic substances. Phys. Rev. B 112 (1958), pp. 739. doi: 10.1103/PhysRev.112.739
  • H.J. Kim, K.S. Kim, J.F. Wang, M. Sasaki, N. Satoh, A. Ohnishi, M. Kitaura, M. Yang and L. Li, Dirac versus Weyl fermions in topological insulators: Adler-Bell-Jackiw anomaly in transport phenomena. Phys. Rev. Lett. 111 (2013), pp. 246603. doi: 10.1103/PhysRevLett.111.246603
  • P.R. Hammar and M. Johnson, Potentiometric measurements of the spin-split subbands in a two-dimensional electron gas. Phys. Rev. B 61 (2000), pp. 7207. doi: 10.1103/PhysRevB.61.7207
  • R.H. Silsbee, Theory of the detection of current-induced spin polarization in a two-dimensional electron gas. Phys. Rev. B 63 (2001), pp. 155305. doi: 10.1103/PhysRevB.63.155305
  • H. Ishida, Bulk versus surface contribution to the Rashba spin splitting of Shockley surface states. Phys. Rev. B 98 (2018), pp. 205412. doi: 10.1103/PhysRevB.98.205412
  • M.A.T. Sandoval, A.F. da Silva, E.A. de Andrada e Silva and G.C. La Rocca, Rashba and Dresselhaus spin-orbit interaction strength in GaAs/GaAlAs heterojunctions. Phys. Proc. 28 (2012), pp. 95. doi: 10.1016/j.phpro.2012.03.678
  • S.K. Dhar, S.M. Pattalwar and R. Vijayaraghavan, Magnetic and thermal behavior of CeAlX (X = Si and Ge) compounds. J. Magn. Magn. Mater. 104 (1992), pp. 1303. doi: 10.1016/0304-8853(92)90593-D
  • S.K. Dhar and S.M. Pattalwar, Structural and magnetic properties of CeAlxSi2-x and CeAlxGe2-x alloys. J. Magn. Magn. Mater. 152 (1996), pp. 22. doi: 10.1016/0304-8853(95)00438-6
  • C.Y. Guo, F. Wu, Z.Z. Wu, M. Smidman, C. Cao, A. Bostwick, C. Jozwiak, E. Rotenberg, Y. Liu, F. Steglich and H.Q. Yuan, Evidence for Weyl fermion in a canonical heavy-fermion semimetal YbPtBi. Nat. Commun. 9 (2018), pp. 4622. doi: 10.1038/s41467-018-06782-1
  • Z. Okvatovity, H. Yasuoka, M. Baenitz, F. Simon and B. Dora, Nuclear spin-lattice relaxation time in TaP and the Knight shift of Weyl semimetals. Phys. Rev. B 99 (2019), pp. 115107. doi: 10.1103/PhysRevB.99.115107

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.