284
Views
6
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Instantaneous work hardening behaviour of two-phase tungsten heavy alloys: a phenomenological approach

, , , &
Pages 1519-1538 | Received 15 Oct 2019, Accepted 08 Feb 2020, Published online: 19 Feb 2020

References

  • R. Luo, D. Huang, and M. Yang, Penetrating performance and ‘self-sharpening’ behavior of fine-grained tungsten heavy alloy rod penetrators. Mater. Sci. Eng.: A 675 (2016), pp. 262–270.
  • R. Neu, H. Maier, and M. Balden, Investigations on tungsten heavy alloys for use as plasma facing material. Fusion Eng. Des. 124 (2017), pp. 450–454.
  • H. Hakan and N. Durlua, Effect of sintering temperature on the high strain rate-deformation of tungsten heavy alloys. Int. J. Impact Eng. 121 (2018), pp. 44–54.
  • H. Choe, S.M. Abkowitz, S. Abkowitz, and D.C. Dunand, Effect of tungsten dissolution on the mechanical properties of Ti–W composites. J. Alloys Compd. 390 (2005), pp. 62–66.
  • K. Zhang and G.C. Chun, Powder metallurgy of tungsten alloy. Mater. Sci. Forum 534–536 (2007), pp. 1285–1288.
  • Y. Sahin, Recent progress in processing of tungsten heavy alloys. J. Powd. Tech 2014 (2014), pp. Article 764306.
  • U. Ravi Kiran, A. Panchal, M. Sankaranarayana, and T.K. Nandy, Effect of alloying addition and microstructural parameters on mechanical properties of 93% tungsten heavy alloys. Mater. Sci. Eng.: A 640 (2015), pp. 82–90.
  • K.T. Ramesh and R.S. Coates, Microstructural influences on the dynamic response of tungsten heavy alloys. Metall. Trans. A 23A (1992), pp. 2625–2630.
  • X. Gong, J.L. Fan, and F. Ding, Effect of tungsten content on microstructure and quasi-static tensile fracture characteristics of rapidly hot-extruded W–Ni–Fe alloys. Int. J. Refract. Met. Hard Mater 30 (1) (2012), pp. 71–77.
  • T.W. Penrice and J. Bost, High density tungsten-nickel-iron-cobalt alloys having improved hardness and method for making same, US Patent No. US 4762559 (1988).
  • B. Katavic, M. Nikacevic, and Z. Odanovic, Effect of cold swaging and heat treatment on properties of the P/M 91W-6Ni-3Co heavy alloy. Sci. Sinter. 40 (3) (2008), pp. 319–331.
  • B. Katavic, M. Nikacevic, and Z. Odanovic, Effects of strain aging on the structure and mechanical properties of PM 92·5W–5Ni–2·5Fe heavy alloys. Powder Metall. 48 (3) (2005), pp. 288–294.
  • R. Curry, F. Issartel, J.M. Joubert, and H. Coque, Evolution of cobalt-free tungsten heavy alloys for kinetic energy penetrators. Powder Metall. 56 (2013), pp. 347–350.
  • P.B. Kemp and R.M. German, Mechanical properties of molybdenum alloyed liquid phase-sintered tungsten-based composites. Metall. Mater. Trans. A 26 (8) (1995), pp. 2187–2189.
  • L. Wensheng, M.A. Yunzhu, and H. Baiyun, Influence of minor elements additions on microstructure and properties of 93W-4·9Ni-2·1Fe alloys. Bull. Mater. Sci. 31 (1) (2008), pp. 1–6.
  • M.F. Ashby, The deformation of plastically non-homogeneous materials. Philos. Mag.: J. Theor. Exp. Appl. Phys. 21 (170) (1970), pp. 399–424.
  • S.H. Hong and H.J. Ryu, Combination of mechanical alloying and two-stage sintering of a 93W−5.6Ni−1.4Fe tungsten heavy alloy. Mater. Sci. Eng.: A 344 (2003), pp. 253–260.
  • S. Churn and R.M. German, Fracture behaviour of W-Ni-Fe alloys. Metall. Trans. A 15 (1984), pp. 331–338.
  • A. Panchal, K. Venugopal Reddy, and A.K. Singh, On the flow and work hardening behaviour of tungsten heavy alloy 92W-5.5Ni-2.5Fe. Int. J. Refract. Met. Hard Mater 88 (2020), pp. 105203.
  • C. Keller, E. Hug, and D. Chateigner, On the origin of the stress decrease for nickel polycrystals with few grains across the thickness. Mater. Sci. Eng.: A 500 (2009), pp. 207–215.
  • A. Panchal and T.K. Nandy, Effect of composition, heat treatment and deformation on mechanical properties of tungsten heavy alloys. Mater. Sci. Eng.: A 733 (2018), pp. 374–384.
  • A. Panchal, U. Ravi kiran, T.K. Nandy, and A.K. Singh, Tensile flow behavior of tungsten heavy alloys produced by CIPing and gelcasting routes. Metall. Mater. Trans. A 49A (2018), pp. 2084–2098.
  • ASTM E8M-16a, Standard test methods for tension testing of metallic materials, Annual Book of ASTM Standards, 03.01 (2018).
  • D.C. Ludwigson, Modified stress-strain relation of FCC metals and alloys. Metall. Trans. 2 (1971), pp. 2825–2828.
  • J.H. Hollomon, Tensile deformation. Trans. AIME 162 (1945), pp. 268–290.
  • P. Ludwik, Elements der Technologischen Mechanik, Verlag Von Julius Springer, Leipzig, 32 (1909).
  • H.W. Swift, Plastic instability under plane stress. J. Mech. Phys. Solids 1 (1952), pp. 1–18.
  • G.E. Dieter, Mechanical Metallurgy, 3rd ed., McGraw-Hill, New York, 1988.
  • A. Pathak, A. Panchal, T.K. Nandy, and A.K. Singh, Ternary W-Ni-Fe tungsten heavy alloys: A first principles and experimental Investigations. Int. J. Refract. Met. Hard Mater 75 (2018), pp. 43–49.
  • O.H. Nielsen and R.M. Martin, Quantum–mechanical theory of stress and force. Phys. Rev. B 32 (1985), pp. 3780–3791.
  • O.H. Nielsen and R.M. Martin, Erratum: Quantum–mechanical theory of stress and force. Phys. Rev. B 35 (1987), pp. 9308.
  • K.K. Mehta, P. Mukhopadhyay, R.K. Mandal, and A.K. Singh, Microstructure, texture and orientation dependent flow behavior of hot rolled and annealed ternary Ni–16Cr–16Mo, Ni–16Cr–4W and Ni–16Cr–8Fe alloys. Mater. Charact. 110 (2015), pp. 175–191.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.