249
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

How does the structural inhomogeneity influence the shear band behaviours of metallic glasses

, , &
Pages 1663-1681 | Received 05 Dec 2019, Accepted 16 Jan 2020, Published online: 20 Feb 2020

References

  • A.L. Greer and E. Ma, Bulk metallic glasses: At the cutting edge of metals research. MRS Bull. 32 (2007), pp. 611–615. doi: 10.1557/mrs2007.121
  • A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48 (2000), pp. 279–306. doi: 10.1016/S1359-6454(99)00300-6
  • P.S. Steif, F. Spaepen and J.W. Hutchinson, Strain localization in amorphous metals. Acta Metall. 30 (1982), pp. 447–455. doi: 10.1016/0001-6160(82)90225-5
  • F. Spaepen, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25 (1977), pp. 407–415. doi: 10.1016/0001-6160(77)90232-2
  • M.Q. Jiang and L.H. Dai, On the origin of shear banding instability in metallic glasses. J. Mech. Phys. Solids 57 (2009), pp. 1267–1292. doi: 10.1016/j.jmps.2009.04.008
  • R. Huang, Z. Suo, J.H. Prevost and W.D. Nix, Inhomogeneous deformation in metallic glasses. J. Mech. Phys. Solids 50 (2002), pp. 1011–1027. doi: 10.1016/S0022-5096(01)00115-6
  • Y.F. Gao, An implicit finite element method for simulating inhomogeneous deformation and shear bands of amorphous alloys based on the free-volume model. Modell. Simul. Mater. Sci. Eng. 14 (2006), pp. 1329–1345. doi: 10.1088/0965-0393/14/8/004
  • Y. Chen and L. Dai, Onset and direction of shear banding instability in metallic glasses. J. Mater. Sci. Technol. 30 (2014), pp. 616–621. doi: 10.1016/j.jmst.2014.05.005
  • W. Ma, Y. Xu, B. Shi and J. Li, Effect of aspect ratio on the evolution of shear bands in Zr61.7Al8Ni13Cu17Sn0.3 bulk metallic glass. J. Mater. Sci. Technol. 33 (2017), pp. 99–104. doi: 10.1016/j.jmst.2015.12.020
  • Y.Q. Cheng and E. Ma, Intrinsic shear strength of metallic glass. Acta Mater. 59 (2011), pp. 1800–1807. doi: 10.1016/j.actamat.2010.11.046
  • L. Tian, Y.Q. Cheng, Z.W. Shan, J. Li, C.C. Wang, X.D. Han, J. Sun and E. Ma, Approaching the ideal elastic limit of metallic glasses. Nat. Commun. 3 (2012), pp. 609. doi: 10.1038/ncomms1619
  • W.L. Johnson and K. Samwer, A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys. Rev. Lett. 95 (2005), pp. 195501. doi: 10.1103/PhysRevLett.95.195501
  • G.N. Yang, B.A. Sun, S.Q. Chen, J.L. Gu, Y. Shao, H. Wang and K.F. Yao, Understanding the effects of Poisson’s ratio on the shear band behavior and plasticity of metallic glasses. J. Mater. Sci. 52 (2017), pp. 6789–6799. doi: 10.1007/s10853-017-0917-9
  • D. Klaumünzer, R. Maaß and J.F. Löffler, Stick-slip dynamics and recent insights into shear banding in metallic glasses. J. Mater. Res. 26 (2011), pp. 1453–1463. doi: 10.1557/jmr.2011.178
  • S.X. Song and T.G. Nieh, Direct measurements of shear band propagation in metallic glasses – An overview. Intermetallics 19 (2011), pp. 1968–1977. doi: 10.1016/j.intermet.2011.06.018
  • R. Maaß and J.F. Löffler, Shear-band dynamics in metallic glasses. Adv. Funct. Mater. 25 (2015), pp. 2353–2368. doi: 10.1002/adfm.201404223
  • R. Maab, D. Klaumunzer, G. Villard and P.M. Derlet, Shear-band arrest and stress overshoots during inhomogeneous flow in a metallic glass. Appl. Phys. Lett. 100 (2012), pp. 071904. doi: 10.1063/1.3684871
  • G.N. Yang, S.Q. Chen, J.L. Gu, S.F. Zhao, J.F. Li, Y. Shao, H. Wang and K.F. Yao, Serration behaviours in metallic glasses with different plasticity. Philos. Mag. 96 (2016), pp. 2243–2255. doi: 10.1080/14786435.2016.1197434
  • Z. Wang, P. Wen, L.S. Huo, H.Y. Bai and W.H. Wang, Signature of viscous flow units in apparent elastic regime of metallic glasses. Appl. Phys. Lett. 101 (2012), pp. 121906. doi: 10.1063/1.4753813
  • Y.J. Huang, J.C. Khong, T. Connolley and J. Mi, The onset of plasticity of a Zr-based bulk metallic glass. Int. J. Plast. 60 (2014), pp. 87–100. doi: 10.1016/j.ijplas.2014.05.003
  • J.C. Qiao, Q. Wang, J.M. Pelletier, H. Kato, R. Casalini, D. Crespo, E. Pineda, Y. Yao and Y. Yang, Structural heterogeneities and mechanical behavior of amorphous alloys. Prog. Mater. Sci. 104 (2019), pp. 250–329. doi: 10.1016/j.pmatsci.2019.04.005
  • T. Egami, Atomic level stresses. Prog. Mater. Sci. 56 (2011), pp. 637–653. doi: 10.1016/j.pmatsci.2011.01.004
  • Y.Q. Cheng and E. Ma, Atomic-level structure and structure–property relationship in metallic glasses. Prog. Mater. Sci. 56 (2011), pp. 379–473. doi: 10.1016/j.pmatsci.2010.12.002
  • D. Jun, P. Sylvain, M.L. Falk, C. Yongqiang and M. Evan, Soft spots and their structural signature in a metallic glass. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), pp. 14052–14056. doi: 10.1073/pnas.1412095111
  • S.T. Liu, Z. Wang, H.L. Peng, H.B. Yu and W.H. Wang, The activation energy and volume of flow units of metallic glasses. Scripta Mater. 67 (2012), pp. 9–12. doi: 10.1016/j.scriptamat.2012.03.009
  • G.N. Yang, Y. Shao and K.F. Yao, The material-dependence of plasticity in metallic glasses: An origin from shear band thermology. Mater. Des. 96 (2016), pp. 189–194. doi: 10.1016/j.matdes.2016.02.007
  • Y.Q. Cheng, Z. Han, Y. Li and E. Ma, Cold versus hot shear banding in bulk metallic glass. Phys. Rev. B 80 (2009), pp. 134115. doi: 10.1103/PhysRevB.80.134115
  • J. Pan, Q. Chen, L. Liu and Y. Li, Softening and dilatation in a single shear band. Acta Mater. 59 (2011), pp. 5146–5158. doi: 10.1016/j.actamat.2011.04.047
  • M.Q. Jiang, G. Wilde and L.H. Dai, Shear band dilatation in amorphous alloys. Scripta Mater. 127 (2017), pp. 54–57. doi: 10.1016/j.scriptamat.2016.08.038
  • W.H. Wang, Correlation between relaxations and plastic deformation, and elastic model of flow in metallic glasses and glass-forming liquids. J. Appl. Phys. 110 (2011), pp. 053521. doi: 10.1063/1.3632972
  • Y. Luo, G.N. Yang, Y. Shao and K.F. Yao, The effect of void defects on the shear band nucleation of metallic glasses. Intermetallics 94 (2018), pp. 114–118. doi: 10.1016/j.intermet.2017.12.026
  • Y. Shao, G.N. Yang, K.F. Yao and X. Liu, Direct experimental evidence of nano-voids formation and coalescence within shear bands. Appl. Phys. Lett. 105 (2014), pp. 181909. doi: 10.1063/1.4901281
  • R. Maaß, P. Birckigt, C. Borchers, K. Samwer and C.A. Volkert, Long range stress fields and cavitation along a shear band in a metallic glass: The local origin of fracture. Acta Mater. 98 (2015), pp. 94–102. doi: 10.1016/j.actamat.2015.06.062
  • S.G. Mayr, Activation energy of shear transformation zones: A key for understanding rheology of glasses and liquids. Phys. Rev. Lett. 97 (2006), pp. 195501. doi: 10.1103/PhysRevLett.97.195501
  • D. Rodney and C. Schuh, Distribution of thermally activated plastic events in a flowing glass. Phys. Rev. Lett. 102 (2009), pp. 235503. doi: 10.1103/PhysRevLett.102.235503
  • A.S. Argon, Plastic deformation in metallic glasses. Acta Metall. 27 (1979), pp. 47–58. doi: 10.1016/0001-6160(79)90055-5
  • Y. Zhang and A.L. Greer, Thickness of shear bands in metallic glasses. Appl. Phys. Lett. 89 (2006), pp. 071907. doi: 10.1063/1.2336598
  • Y. Shao, K.F. Yao, M. Li and X. Liu, Two-zone heterogeneous structure within shear bands of a bulk metallic glass. Appl. Phys. Lett. 103 (2013), pp. 171901. doi: 10.1063/1.4826117
  • X.J. Gu, S.J. Poon, G.J. Shiflet and J.J. Lewandowski, Ductile-to-brittle transition in a Ti-based bulk metallic glass. Scripta Mater. 60 (2009), pp. 1027–1030. doi: 10.1016/j.scriptamat.2009.02.037
  • G.R. Garrett, M.D. Demetriou, J. Chen and W.L. Johnson, Effect of microalloying on the toughness of metallic glasses. Appl. Phys. Lett. 101 (2012), pp. 241913. doi: 10.1063/1.4769997
  • G.N. Yang, J.L. Gu, S.Q. Chen, Y. Shao, H. Wang and K.F. Yao, Serration behavior of a Zr-based metallic glass under different constrained loading conditions. Metall. Mater. Trans. A 47 (2016), pp. 5395–5400. doi: 10.1007/s11661-016-3685-2
  • S.B. Qiu and K.F. Yao, Novel application of the electrodeposition on bulk metallic glasses. Appl. Surf. Sci. 255 (2008), pp. 3454–3458. doi: 10.1016/j.apsusc.2008.07.077
  • W.F. Ma, H.C. Kou, J.S. Li, H. Chang and L. Zhou, Effect of strain rate on compressive behavior of Ti-based bulk metallic glass at room temperature. J. Alloys Compd. 472 (2009), pp. 214–218. doi: 10.1016/j.jallcom.2008.04.043
  • W.H. Wang, Bulk metallic glasses with functional physical properties. Adv. Mater. 21 (2009), pp. 4524–4544. doi: 10.1002/adma.200901053
  • S. Li, R.J. Wang, M.X. Pan, D.Q. Zhao and W.H. Wang, Formation and properties of RE55Al25Co20 (RE=Y, Ce, La, Pr, Nd, Gd, Tb, Dy, Ho and Er) bulk metallic glasses. J. Non-Cryst. Solids 354 (2008), pp. 1080–1088. doi: 10.1016/j.jnoncrysol.2007.08.022
  • W.H. Wang, Correlations between elastic moduli and properties in bulk metallic glasses. J. Appl. Phys. 99 (2006), pp. 093506. doi: 10.1063/1.2193060
  • J.J. Lewandowski, W.H. Wang and A.L. Greer, Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85 (2005), pp. 77–87. doi: 10.1080/09500830500080474
  • G.N. Yang, B.A. Sun, S.Q. Chen, Y. Shao and K.F. Yao, The multiple shear bands and plasticity in metallic glasses: A possible origin from stress redistribution. J. Alloys Compd. 695 (2017), pp. 3457–3466. doi: 10.1016/j.jallcom.2016.12.012
  • R. Maaß, D. Klaumünzer and J.F. Löffler, Propagation dynamics of individual shear bands during inhomogeneous flow in a Zr-based bulk metallic glass. Acta Mater. 59 (2011), pp. 3205–3213. doi: 10.1016/j.actamat.2011.01.060
  • B.A. Sun, H.B. Yu, W. Jiao, H.Y. Bai, D.Q. Zhao and W.H. Wang, Plasticity of ductile metallic glasses: A self-organized critical state. Phys. Rev. Lett. 105 (2010), pp. 035501. doi: 10.1103/PhysRevLett.105.035501
  • P. Zhao, J. Li and Y. Wang, Heterogeneously randomized STZ model of metallic glasses: softening and extreme value statistics during deformation. Int. J. Plast. 40 (2013), pp. 1–22. doi: 10.1016/j.ijplas.2012.06.007
  • G.N. Yang, Z. Li, F.M. Guo, Y. Luo, Z.D. Han, Z.C. Lu, J.Q. Wei, Y. Shao and K.F. Yao, Size effect in Pd77.5Cu6Si16.5 metallic glass micro-wires: more scattered strength with decreasing diameter. Appl. Phys. Lett. 111 (2017), pp. 011905. doi: 10.1063/1.4991849

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.