593
Views
15
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Structural, electronic, magnetic and thermoelectric properties of inverse Heusler alloys Ti2CoSi, Mn2CoAl and Cr2ZnSi by employing Ab initio calculations

, , ORCID Icon, , , & show all
Pages 1636-1661 | Received 14 Sep 2019, Accepted 10 Feb 2020, Published online: 24 Feb 2020

References

  • L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321 (2008), pp. 1457. doi: 10.1126/science.1158899
  • G. Skomedal, N.R. Kristiansen, M. Engvoll and H. Middleton, Methods for enhancing the thermal durability of high-temperature thermoelectric materials. J. Electron. Mater. 43 (2014), pp. 1946. doi: 10.1007/s11664-013-2917-0
  • W. Liu, Q. Jie, H.S. Kim and Z. Ren, Current progress and future challenges in thermoelectric power generation: from materials to devices. Acta Mater. 87 (2015), pp. 357. doi: 10.1016/j.actamat.2014.12.042
  • G.J. Snyder and E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7 (2008), pp. 105. doi: 10.1038/nmat2090
  • R. Moshwan, L. Yang, J. Zou and Z.G. Chen, Eco-friendly SnTe thermoelectric materials: Progress and future Challenges. Adv. Funct. Mater. 27 (2017), pp. 1703278. doi: 10.1002/adfm.201703278
  • H. Wang, Y. Pei, A.D. LaLonde and G.J. Snyder, Weak electron-phonon coupling contributing to high thermoelectric performance in n-type PbSe. Proc. Natl. Acad. Sci. U. S. A. 109(25) (2012), pp. 9705–9709. Bibcode PNAS.109.9705W. doi: 10.1073/pnas.1111419109
  • F. Casper, T. Graf, S. Chadov, B. Balke and C. Felser, Half-Heusler compounds: novel materials for energy and spintronic applications. Semicond. Sci. Technol. 27 (2012), pp. 063001. doi: 10.1088/0268-1242/27/6/063001
  • J.W.G. Bos and R.A. Downie, Half-Heusler thermoelectrics: a complex class of materials. J. Phys. Condens. Matter 26 (2014), pp. 433201. doi: 10.1088/0953-8984/26/43/433201
  • S. Chen and Z. Ren, Recent progress of half-Heusler for moderate temperature thermoelectric applications. Mater. Today 16 (2013), pp. 387. doi: 10.1016/j.mattod.2013.09.015
  • W.G. Zeier, J. Schmitt, G. Hautier, U. Aydemir, Z.M. Gibbs, C. Felser and G.J. Snyder, Engineering half-Heusler thermoelectric materials using Zintl chemistry. Nat. Rev. Mater. 1 (2016), pp. 16032. doi: 10.1038/natrevmats.2016.32
  • T. Zhu, C. Fu, H. Xie, Y. Liu and X. Zhao, High efficiency half-heusler thermoelectric materials for energy Harvesting. Adv. Energy Mater. 5 (2015), pp. 1500588. doi: 10.1002/aenm.201500588
  • W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, J. Poon and T.M. Tritt, Recent Advances in Nanostructured thermoelectric half-Heusler compound. Nanomaterials 2 (2012), pp. 379. doi: 10.3390/nano2040379
  • E. Rausch, B. Balke, S. Ouardi and C. Felser, Enhanced thermoelectric performance in the p-type half-Heusler (Ti/Zr/Hf)CoSb0.8Sn0.2 system via phase separation. Phys. Chem. Chem. Phys 16 (2014), pp. 25258. doi: 10.1039/C4CP02561J
  • B. Yuan, B. Wang, L. Huang, X. Lei, L. Zhao, C. Wang and Q. Zhang, Effects of Sb substitution by Sn on the thermoelectric properties of ZrCoSb. J. Electron. Mater 46 (2017), pp. 3076. doi: 10.1007/s11664-016-5168-z
  • S. Anand, K. Xia, V.I. Hegde, U. Aydemir, V. Kocevski, T. Zhu, C. Wolverton and G.J. Snyder, A valence balanced rule for discovery of 18-electron half-Heuslers with defects. Energy Environ. Sci 11 (2018), pp. 1480. doi: 10.1039/C8EE00306H
  • T. Graf, C. Felser and S.S. Parkin, Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem 39 (2011), pp. 1. doi: 10.1016/j.progsolidstchem.2011.02.001
  • M.S. Lee, F.P. Poudeu and S.D. Mahanti, Electronic structure and thermoelectric properties of Sb-based semiconducting half-Heusler compounds. Phys. Rev. B 83 (2011), pp. 085204. doi: 10.1103/PhysRevB.83.085204
  • J.E. Douglas, P.A. Chater, C.M. Brown, T.M. Pollock and R. Seshadri, Nanoscale structural heterogeneity in Ni-rich half-Heusler TiNiSn. J. Appl. Phys. 116 (2014), pp. 163514. doi: 10.1063/1.4900497
  • J. Carrete, N. Mingo, S. Wang and S. Curtarolo, Nanograined half-heusler semiconductors as Advanced Thermoelectrics: An Ab initio high-throughput Statistical study. Adv. Funct. Mater. 24 (2014), pp. 7427. doi: 10.1002/adfm.201401201
  • M. Schrade, K. Berland, S.N.H. Eliassen, M.N. Guzik, C. Echevarria-Bonet, M.H. Sørby, P. Jenus, B.C. Hauback, R. Tofan, A.E. Gunnæs, C. Persson, O.M. Løvvik and T.G. Finstad, The role of grain boundary scattering in reducing the thermal conductivity of polycrystalline XNiSn (X = Hf, Zr, Ti) half-Heusler alloys. Sci. Rep. 7 (2017), pp. 13760. doi: 10.1038/s41598-017-14013-8
  • S.N.H. Eliassen, A. Katre, G.K.H. Madsen, C. Persson, O.M. Løvvik and K. Berland, Lattice thermal conductivity of TixZryHf1−x−yNiSn half-Heusler alloys calculated from first principles: Key role of nature of phonon modes. Phys. Rev. B 95 (2017), pp. 045202. doi: 10.1103/PhysRevB.95.045202
  • C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao and T. Zhu, Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun. 6 (2015), pp. 8144. doi: 10.1038/ncomms9144
  • F. Heusler, W. Starck and E. Haupt, Verh DPG 5 (1903), pp. 220.
  • H.C. Kandpal, G.H. Fecher and C. Felser, Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds. J. Phys. D: Appl. Phys. 40 (2007), pp. 1507. doi: 10.1088/0022-3727/40/6/S01
  • C. Felser, G.H. Fecher and B. Balke, Spintronics: A challenge for materials science and solid-state chemistry. Angew Chem Int. 46 (2007), pp. 668. doi: 10.1002/anie.200601815
  • P.G. van Engen, K.H.J. Bushow, R. Jongebreuer and M. Erman, Ptmnsb, a material with very high magneto-optical Kerr effect. Appl. Phys. Lett. 42 (1983), pp. 202. doi: 10.1063/1.93849
  • J.S. Moodera, J. Nassar and G. Mathon, Spin-tunneling in ferromagnetic junctions. Annu Rev Mater. 29 (1999), pp. 381. doi: 10.1146/annurev.matsci.29.1.381
  • I. Galanakis and P. Mavropoulos, Zinc-blende compounds of transition elements with N, P, As, Sb, S, Se, and Te as half-metallic systems. Phys. Rev. B 67 (2003), pp. 104417. doi: 10.1103/PhysRevB.67.104417
  • I. Galanakis, P.H. Dederichs and N. Papamkolaou, Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B 66 (2002), pp. 174429. doi: 10.1103/PhysRevB.66.174429
  • P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz: WIEN2 K, Karlheinz Schwarz, Techn. Universitat, Wien, Austria. ISBN 3-9501031-1-1-2 (2001).
  • J.P. Perdew, S. Burke and M. Ernzerhof, Generalized gradient approximation Made Simple. Phys. Rev. Lett. 77 (1996), pp. 3865. doi: 10.1103/PhysRevLett.77.3865
  • F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett 102 (2009), pp. 226401. doi: 10.1103/PhysRevLett.102.226401
  • I. Galanakis and E. Şaşıoğlu, High TC half-metallic fully-compensated ferrimagnetic Heusler compounds. Appl. Phys. Lett 99 (2011), pp. 052509. doi: 10.1063/1.3619844
  • I. Galanakis, P.H. Dederichs and N. Papanikolaou, Origin and properties of the gap in the half-ferromagnetic Heusler alloys. Phys. Rev. B 66 (2002), pp. 134428. doi: 10.1103/PhysRevB.66.134428
  • S. Skaftouros, K. Özdoğan, E. Şaşıoğlu and I. Galanakis, Generalized Slater-Pauling rule for the inverse Heusler compounds. Phys. Rev. B 87 (2013), pp. 024420. doi: 10.1103/PhysRevB.87.024420
  • K. Georg, H. Madsen and D.J. Singh, BoltzTraP, A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175 (2006), pp. 67. doi: 10.1016/j.cpc.2006.03.007
  • O. Jepsen and O.K. Andersen, The electronic structure of h.c.p. Ytterbium. Sol. Stat. Commun. 9 (1971), pp. 1763. doi: 10.1016/0038-1098(71)90313-9
  • J.A. Wilson and A.D. Yoffe, The salient structural features of TiS2 are blocks of two hexagonally closed-packed chalcogen layers. Phys. Adv. 18 (1969), pp. 193. doi: 10.1080/00018736900101307
  • F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30 (1944), pp. 5390.
  • T.J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J.V. Badding and J.O. Sofo, Transport coefficients from first-principles calculations. Phys. Rev. B 68 (2003), pp. 125210. doi: 10.1103/PhysRevB.68.125210
  • A. Jakobsson, P. Mavropoulos, E. Şaşıoğlu, S. Blügel, M. Ležaić, B. Sanyal and I. Galanakis, First-principles calculations of exchange interactions, spin waves, and temperature dependence of magnetization in inverse-Heusler-based spin gapless semiconductors. Phys. Rev. B 91 (2015), pp. 174439. doi: 10.1103/PhysRevB.91.174439
  • K.L. Yao, G.Y. Gao, Z.L. Liu and L. Zhu, Half-metallic ferromagnetism of zinc-blende CrS and CrP: a first-principles pseudopotential study. Solid State Commun. 133 (2005), pp. 301. doi: 10.1016/j.ssc.2004.11.016
  • M. Amiri, H. Akbari, B. Nedaee-shakarab, A. Boochani, A. Aminian, Y. Zangeneh and S. Naderi, Thermodynamic stability, half-metallic and optical properties of Sc2CoSi [001] Film: a DFT study. Commun. Theor. Phys. 71 (2019), pp. 455–462. doi: 10.1088/0253-6102/71/4/455
  • H.A.R. Aliabad, M. Ghazanfari, A. Iftikhar and M.A. Saeed, Ab initio calculations of structural, optical and thermoelectric properties for CoSb3 and ACo4Sb12 (A = La, Tl and Y) compounds. Comput. Mater. Sci. 65 (2012), pp. 509–519. doi: 10.1016/j.commatsci.2012.08.013
  • M. Bilal, B. Khan, H.A. Rahnamaye Aliabad, M. Maqbool, S. Jalali and I.A. Asadabadi, Thermoelectric properties of SbNCa3 and BiNCa3 for thermoelectric devices and alternative energy applications. Comput. Phys. Commun. 185 (2014), pp. 1394–1398. doi: 10.1016/j.cpc.2014.02.001
  • T.M. Bhat and D.C. Gupta, Analysis of electronic, thermal, and thermoelectric properties of the half-Heusler CrTiSi material using density functional theory. J. Phys. Chem. Solids 119 (2018), pp. 281–287. doi: 10.1016/j.jpcs.2018.04.012
  • T.M. Bhat, M. Nabi and D.C. Gupta, Structural, elastic, thermodynamic and thermoelectric properties of Fe2TiSn Heusler alloy: high pressure study. Results Phy. 12 (2018), pp. 15. doi: 10.1016/j.rinp.2018.11.041
  • H.A.R. Aliabad and Z. Parvizi, Structural, electronical and thermal properties of XVO4 (X = Y, Gd) vanadate crystals. Comput. Mater. Sci. 93 (2014), pp. 125–132. doi: 10.1016/j.commatsci.2014.06.025
  • T. Sands, Designing Nanocomposite Thermoelectric Materials, nanohub.org (2005).
  • G.A. Slack, Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34 (1973), pp. 321–335. doi: 10.1016/0022-3697(73)90092-9
  • T. Jia, G. Chen and Y. Zhang, Lattice thermal conductivity evaluated using elastic properties. Phys. Rev. B 95 (2017), pp. 155206. doi: 10.1103/PhysRevB.95.155206
  • S. Parsamehr, A. Boochani, E. Sartipi, M. Amiri, S. Solaymani, S. Naderi and A. Aminian, Half-metallic, thermoelectric, optical, and thermodynamic phase stability of RbBaB (001) Film: A DFT study. Int. J. Thermophys. 40 (2019), pp. 64. doi: 10.1007/s10765-019-2531-3
  • H.A.R. Aliabad and M. Kheirabadi, Thermoelectricity and superconductivity in pure and doped Bi2Te3 with Se. Physica B: Condens. Matt. 433 (2014), pp. 157–164. doi: 10.1016/j.physb.2013.10.035
  • I.H. Bhat, S.Y.T. Mohiuddin and D.C. Gupta, Investigation of electronic structure, magnetic and transport properties of half-metallic Mn2CuSi and Mn2ZnSi Heusler alloys. J. Magn.Magn. Mater. 395 (2015), pp. 81. doi: 10.1016/j.jmmm.2015.07.022
  • N. Salimi, A. Boochani, M. Elahi and Z. Ghoran Nevis, Physical, electronic and thermoelectric properties of [001] surfaces of TiCoSb half-Heusler compound. Mater. Res. Express 6 (2019), pp. 086414. doi: 10.1088/2053-1591/ab1c35

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.