265
Views
6
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Migration behaviour of vacancies and damage structure recovery in a Fe-based Fe-Cr-Mn-Cu-Mo multi-component alloy

, , ORCID Icon, ORCID Icon &
Pages 1733-1748 | Received 29 Nov 2019, Accepted 03 Mar 2020, Published online: 15 Mar 2020

References

  • J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6 (2004), pp. 299. doi: 10.1002/adem.200300567
  • C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, and S.Y. Chang, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mat. Trans. A. 36A (2005), pp. 1263. doi: 10.1007/s11661-005-0218-9
  • F. Otto, A. Dlouhy, C. Somsen, H. Bei, G. Eggeler, and E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61 (2013), pp. 5743. doi: 10.1016/j.actamat.2013.06.018
  • B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications. Science 345 (2014), pp. 1153. doi: 10.1126/science.1254581
  • Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, and D. Raabe, Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 94 (2015), pp. 124. doi: 10.1016/j.actamat.2015.04.014
  • D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122 (2017), pp. 448. doi: 10.1016/j.actamat.2016.08.081
  • Z.H. Zhong, Q. Xu, K. Mori, and M. Tokitani, Thermal stability of microstructures and mechanical properties in a Fe-based Fe-Cr-Mn-Cu-Mo multi-component alloy. Phil. Mag. 99 (2018), pp. 1515. doi: 10.1080/14786435.2019.1585588
  • H.P. Chou, Y.S. Chang, S.K. Chen, and J.W. Yeh, Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0<= x <=2) high-entropy alloys. Mat. Sci. E. B. 163 (2009), pp. 184. doi: 10.1016/j.mseb.2009.05.024
  • M.H. Tsai and J.W. Yeh, High-entropy alloys: A critical review. Mater. Res. Lett. 2 (2014), pp. 107. doi: 10.1080/21663831.2014.912690
  • Y.Z. Shi, B. Yang, and P.K. Liaw, Corrosion-resistant high-entropy alloys: A review. Metals. (Basel) 7 (2017), pp. 43. doi: 10.3390/met7020043
  • K. Jin, C. Lu, L.M. Wang, J. Qu, W.J. Weber, Y. Zhang, and H. Bei, Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys. Scr. Mater. 119 (2016), pp. 65. doi: 10.1016/j.scriptamat.2016.03.030
  • T.F. Yang, S.Q. Xia, W. Guo, R. Hu, J.D. Poplawsky, G. Sha, Y. Fang, Z.F. Yan, C.X. Wang, C.G. Li, Y. Zhang, S.J. Zinkle, and Y.G. Wang, Effects of temperature on the irradiation responses of Al0.1CoCrFeNi high entropy alloy. Scr. Mater. 144 (2018), pp. 31. doi: 10.1016/j.scriptamat.2017.09.025
  • T. Nagase, P.D. Rack, J.H. Noh, and T. Egami, In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM). Intermetallics 59 (2015), pp. 32. doi: 10.1016/j.intermet.2014.12.007
  • T. Egami, M. Ojha, O. Khorgolkhuu, D.M. Nicholson, and G.M. Stocks, Local electronic effects and irradiation resistance in high-entropy alloys. JOM 67 (2015), pp. 2345. doi: 10.1007/s11837-015-1579-1
  • F. Granberg, K. Nordlund, M.W. Ullah, K. Jin, C. Lu, H. Bei, L.M. Wang, F. Djurabekova, W.J. Weber, and Y. Zhang, Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys. Phys. Rev. Lett. 116 (2016), pp. 135504. doi: 10.1103/PhysRevLett.116.135504
  • C.Y. Lu, L.L. Niu, N.J. Chen, K. Jin, T.N. Yang, P.Y. Xiu, Y.W. Zhang, F. Gao, H.B. Bei, S. Shi, M.R. He, L.M. Robertson, W.J. Weber, and L.M. Wang, Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat. Commun. 7 (2016), pp. 13564. doi: 10.1038/ncomms13564
  • T. Yoshiie, Y. Hayashi, S. Yanagita, Q. Xu, Y. Satoh, H. Tsujimoto, T. Kozuka, K. Kamae, K. Mishima, S. Shiroya, K. Kobayashi, M. Utsuro, and Y. Fujita, A new materials irradiation facility at the Kyoto university reactor. Nucl. Instr. & Meth. in Phys. Res. A 498 (2003), pp. 522. doi: 10.1016/S0168-9002(02)02143-5
  • K. Nordlund, S.J. Zinkle, A.E. Sand, F. Granberg, R.S. Averback, R. Stoller, T. Suzudo, L. Malerba, F. Banhart, and W.J. Weber, Improving atomic displacement and replacement calculations with physically realistic damage models. Nat. Commun. 9 (2018), pp. 1084. doi: 10.1038/s41467-018-03415-5
  • A.V. Kozlov and V.V. Kirsanov, Radiation defect formation and evolution on C0.03Cr20Ni16Mn6 steel under low-temperature neutron irradiation and their effect on physical and mechanical properties of the steel. J. Nucl. Mater. 233-237 (1996), pp. 1062. doi: 10.1016/S0022-3115(96)00072-4
  • A.F. Makhov, The penetration of electrons into solids. 2. The distribution of electrons in depth. Soviet Phys. Solid State 2 (1961), pp. 1942.
  • A. Vehanen, K. Saarinen, P. Hautojarvi, and H. Huomo, Profiling multilayer structures with monoenergetic positrons. Phys. Rev. B 35 (1978), pp. 4606. doi: 10.1103/PhysRevB.35.4606
  • R.W. Siegel, Positron annihilation spectroscopy. Annu. Rev. Mater. Sci. 10 (1980), pp. 393. doi: 10.1146/annurev.ms.10.080180.002141
  • E. Kuramoto, S. Nagano, K. Nishi, K. Makii, Y. Aono, and M. Takenaka, Positron annihilation lifetime measurement of electron-irradiated Fe-Cr alloys. Mat. Sci. Forum 105-110 (1992), pp. 1125. doi: 10.4028/www.scientific.net/MSF.105-110.1125
  • M.J. Puska and R.M. Nieminen, Defect spectroscopy with positrons – A general calculational method. J. Phys. F: Met. Phys. 13 (1983), pp. 333. doi: 10.1088/0305-4608/13/2/009
  • Q. Xu, T. Yoshiie, and K. Sato, Formation of Cu precipitates and vacancy clusters in neutron-irradiated Fe-Cu alloys. Phil. Mag. Lett. 88 (2008), pp. 353. doi: 10.1080/09500830802014643
  • Q. Xu, T. Yoshiie, and K. Sato, Dose dependence of Cu precipitate formation in Fe-Cu model alloys irradiated with fission neutrons. Phys. Rev. B. 73 (2006), pp. 134115. doi: 10.1103/PhysRevB.73.134115
  • L. Vitos, A.V. Ruban, H.L. Skriver, and J. Kollar, The surface energy of metals. Surf. Sci. 411 (1998), pp. 186. doi: 10.1016/S0039-6028(98)00363-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.