549
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Deformation of a nanocube with a single incoherent precipitate: role of precipitate size and dislocation looping

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1749-1770 | Received 29 Jul 2019, Accepted 11 Feb 2020, Published online: 19 Mar 2020

References

  • S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M. Chen, Y. Wang and Z. Lu, Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature 544 (2017), pp. 460–464. doi: 10.1038/nature22032
  • G.R. Odette, M.J. Alinger and B.D. Wirth, Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res 38 (2008), pp. 471–503. doi: 10.1146/annurev.matsci.38.060407.130315
  • T.M. Pollock and S. Tin, Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J. Propuls. Power 22 (2006), pp. 361–374. doi: 10.2514/1.18239
  • R.C. Reed, The Superalloys: Fundamentals and Applications, 1st ed., Cambridge University Press, Cambridge, 2006.
  • M.A. Meyers and K.K. Chawla, Mechanical Behavior of Materials, 2nd ed., Cambridge University Press, New York, 2009.
  • E. Nembach, Particle Strengthening of Metals and Alloys, Wiley, New York, NY, 1997.
  • J.W. Martin, Micromechanisms in Particle-Hardened Alloys, Cambridge University Press, New York, 1980.
  • L.M. Brown and W.M. Stobbs, The work-hardening of copper-silica. Philos. Mag 23 (1971), pp. 1201–1233. doi: 10.1080/14786437108217406
  • M.F. Ashby, Work hardening of dispersion-hardened crystals. Philos. Mag 14 (1966), pp. 1157–1178. doi: 10.1080/14786436608224282
  • P.M. Hazzledine and P.B. Hirsch, A coplanar Orowan loops model for dispersion hardening. Philos. Mag 30 (1974), pp. 1331–1351. doi: 10.1080/14786437408207286
  • G. Fribourg, Y. Bréchet, A. Deschamps and A. Simar, Microstructure-based modelling of isotropic and kinematic strain hardening in a precipitation-hardened aluminium alloy. Acta Mater. 59 (2011), pp. 3621–3635. doi: 10.1016/j.actamat.2011.02.035
  • H. Proudhon, W.J. Poole, X. Wang and Y. Bréchet, The role of internal stresses on the plastic deformation of the Al–Mg–Si–Cu alloy AA6111. Philos. Mag 88 (2008), pp. 621–640. doi: 10.1080/14786430801894569
  • J. Miyake and M.E. Fine, Electrical conductivity versus strength in a precipitation hardened alloy. Acta Metall. Mater 40 (1992), pp. 733–741. doi: 10.1016/0956-7151(92)90015-7
  • P.M. Anderson, J.P. Hirth, and J. Lothe, Theory of Dislocations. 3rd ed. Cambridge University Press, Cambridge, 2017.
  • I.J. Beyerlein, M.J. Demkowicz, A. Misra and B.P. Uberuaga, Defect-interface interactions. Prog. Mater. Sci. 74 (2015), pp. 125–210. doi: 10.1016/j.pmatsci.2015.02.001
  • A. Vattré, T. Jourdan, H. Ding, M.-C. Marinica and M.J. Demkowicz, Non-random walk diffusion enhances the sink strength of semicoherent interfaces. Nat. Commun 7 (2016), pp. 10424. doi: 10.1038/ncomms10424
  • A. Misra and R. Gibala, Slip transfer and dislocation nucleation processes in multiphase ordered Ni-Fe-Al alloys. Metall. Mater. Trans. A 30 (1999), pp. 991–1001. doi: 10.1007/s11661-999-0152-3
  • C.S. Shin, M.C. Fivel, M. Verdier and K.H. Oh, Dislocation–impenetrable precipitate interaction: a three-dimensional discrete dislocation dynamics analysis. Philos. Mag 83 (2003), pp. 3691–3704. doi: 10.1080/14786430310001599379
  • Y. Xiang, D.J. Srolovitz, L.-T. Cheng and W. E, Level set simulations of dislocation-particle bypass mechanisms. Acta Mater. 52 (2004), pp. 1745–1760. doi: 10.1016/j.actamat.2003.12.016
  • Y. Xiang and D.J. Srolovitz, Dislocation climb effects on particle bypass mechanisms. Philos. Mag 86 (2006), pp. 3937–3957. doi: 10.1080/14786430600575427
  • S. Groh, Transformation of shear loop into prismatic loops during bypass of an array of impenetrable particles by edge dislocations. Mater. Sci. Eng. A 618 (2014), pp. 29–36. doi: 10.1016/j.msea.2014.08.079
  • M. Vivas, P. Lours, C. Levaillant, A. Couret, M.-J. Casanove and A. Coujou, Determination of precipitate strength in aluminium alloy 6056-T6 from transmission electron microscopy in situ straining data. Philos. Mag. A 76 (1997), pp. 921–931. doi: 10.1080/01418619708200007
  • F. Delmas, M. Vivas, P. Lours, M.-J. Casanove, A. Couret and A. Coujou, Straining mechanisms in aluminium alloy 6056. In-situ investigation by transmission electron microscopy. Mater. Sci. Eng. A 340 (2003), pp. 286–291. doi: 10.1016/S0921-5093(02)00184-3
  • G.S. Liu and I.M. Robertson, Three-dimensional visualization of dislocation-precipitate interactions in a Al–4Mg–0.3Sc alloy using weak-beam dark-field electron tomography. J. Mater. Res 26 (2011), pp. 514–522. doi: 10.1557/jmr.2010.83
  • F.J. Humphreys, Local lattice rotations at second phase particles in deformed metals. Acta Metall. 27 (1979), pp. 1801–1814. doi: 10.1016/0001-6160(79)90071-3
  • M.T. Kiani, Y. Wang, N. Bertin, W. Cai and X.W. Gu, Strengthening mechanism of a single precipitate in a metallic nanocube. Nano Lett. 19 (2019), pp. 255–260. doi: 10.1021/acs.nanolett.8b03857
  • R. Ghosh Chaudhuri and S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, Characterization, and Applications. Chem. Rev. 112 (2012), pp. 2373–2433. doi: 10.1021/cr100449n
  • S. Korte, R.J. Stearn, J.M. Wheeler, and W.J. Clegg, High temperature microcompression and nanoindentation in vacuum. J. Mater. Res 27 (2011), pp. 167–176. doi: 10.1557/jmr.2011.268
  • B. Girault, A.S. Schneider, C.P. Frick, and E. Arzt, Strength effects in micropillars of a dispersion strengthened superalloy. Adv. Eng. Mater 12 (2010), pp. 385–388. doi: 10.1002/adem.201000089
  • Y. Zheng, X. Zhong, Z. Li and Y. Xia, Successive, seed-Mediated growth for the synthesis of single-crystal gold nanospheres with uniform diameters controlled in the range of 5-150 nm. Part. Syst. Charact 31 (2014), pp. 266–273. doi: 10.1002/ppsc.201300256
  • C.-F. Hsia, M. Madasu and M.H. Huang, Aqueous phase synthesis of Au–Cu core–shell nanocubes and octahedra with tunable sizes and noncentrally located cores. Chem. Mater 28 (2016), pp. 3073–3079. doi: 10.1021/acs.chemmater.6b00377
  • S.V. Bosakov, Solving the contact problem for a rectangular die on an elastic foundation. Int. Appl. Mech. 39 (2003), pp. 1188–1192. doi: 10.1023/B:INAM.0000010370.17320.f6
  • J. Ribis and Y. de Carlan, Interfacial strained structure and orientation relationships of the nanosized oxide particles deduced from elasticity-driven morphology in oxide dispersion strengthened materials. Acta Mater. 60 (2012), pp. 238–252. doi: 10.1016/j.actamat.2011.09.042
  • C. Wang, J. Li, Y. Lou, C. Kan, Y. Zhu, X. Feng, Y. Ni, H. Xu, D. Shi and X. Wei, Facile synthesis and heteroepitaxial growth mechanism of Au@Cu core–shell bimetallic nanocubes probed by first-principles studies. CrystEngComm 19 (2017), pp. 7287–7297. doi: 10.1039/C7CE01617D
  • D.B. Williams and C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, Springer, New York, 2009.
  • F.W. DelRio, C. Jaye, D.A. Fischer and R.F. Cook, Elastic and adhesive properties of alkanethiol self-assembled monolayers on gold. Appl. Phys. Lett 94 (2009), pp. 131909. doi: 10.1063/1.3111440
  • M.T. Kiani, R.P. Patil, and X.W. Gu, Dislocation surface nucleation in surfactant-passivated metallic nanocubes. MRS Bull. 9 (2019), pp. 1029–1033.
  • W. Cai and W.D. Nix, Imperfections in Crystalline Solids, Cambridge University Press, Cambridge, UK, 2016.
  • S.I. Rao, D.M. Dimiduk, M. Tang, M.D. Uchic, T.A. Parthasarathy and C. Woodward, Estimating the strength of single-ended dislocation sources in micron-sized single crystals. Philos. Mag 87 (2007), pp. 4777–4794. doi: 10.1080/14786430701591513
  • C.R. Weinberger and W. Cai, Surface-controlled dislocation multiplication in metal micropillars. Proc. Natl. Acad. Sci. U. S. A. 105 (2008), pp. 14304–14307. doi: 10.1073/pnas.0806118105
  • A. Head and N. Louat, The distribution of dislocations in linear arrays. Aust. J. Phys 8 (1955), pp. 1. doi: 10.1071/PH550001
  • D.J. Bacon, U.F. Kocks and R.O. Scattergood, The effect of dislocation self-interaction on the orowan stress. Philos. Mag 28 (1973), pp. 1241–1263. doi: 10.1080/14786437308227997
  • P. Kroupa, The interaction between prismatic dislocation loops and straight dislocations. part I. Philos. Mag 7 (1962), pp. 783–801. doi: 10.1080/14786436208212669
  • L.M. Brown and W.M. Stobbs, The work-hardening of copper-silica. Philos. Mag 23 (1971), pp. 1185–1199. doi: 10.1080/14786437108217405
  • S. Kondo, T. Mitsuma, N. Shibata and Y. Ikuhara, Direct observation of individual dislocation interaction processes with grain boundaries. Sci. Adv 2 (2016), pp. e1501926. doi: 10.1126/sciadv.1501926
  • J.R. Greer, D. Jang and X.W. Gu, Exploring deformation mechanisms in nanostructured materials. JOM 64 (2012), pp. 1241–1252. doi: 10.1007/s11837-012-0438-6
  • P. Khanikar, A. Kumar and A. Subramaniam, Image forces on edge dislocations: a revisit of the fundamental concept with special regard to nanocrystals. Philos. Mag 91 (2011), pp. 730–750. doi: 10.1080/14786435.2010.529089
  • W. Püschl, Models for dislocation cross-slip in close-packed crystal structures: a critical review. Prog. Mater. Sci 47 (2002), pp. 415–461. doi: 10.1016/S0079-6425(01)00003-2
  • V. Gerold and H.P. Karnthaler, On the origin of planar slip in f.c.c. alloys. Acta Metall. 37 (1989), pp. 2177–2183. doi: 10.1016/0001-6160(89)90143-0
  • S.H. Oh, M. Legros, D. Kiener and G. Dehm, In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nat. Mater. 8 (2009), pp. 95–100. doi: 10.1038/nmat2370
  • P.J. Imrich, C. Kirchlechner, C. Motz and G. Dehm, Differences in deformation behavior of bicrystalline Cu micropillars containing a twin boundary or a large-angle grain boundary. Acta Mater. 73 (2014), pp. 240–250. doi: 10.1016/j.actamat.2014.04.022
  • B.R. Ramírez, N. Ghoniem and G. Po, Ab initio continuum model for the influence of local stress on cross-slip of screw dislocations in fcc metals. Phys. Rev. B 86 (2012), pp. 094115. doi: 10.1103/PhysRevB.86.094115
  • J.R. Greer and W.D. Nix, Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73 (2006), pp. 245410. doi: 10.1103/PhysRevB.73.245410
  • A.T. Jennings and J.R. Greer, Tensile deformation of electroplated copper nanopillars. Philos. Mag 91 (2011), pp. 1108–1120. doi: 10.1080/14786435.2010.505180
  • L.-Y. Chen, J.-Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J-M. Yang, S. Mathaudhu and X-C. Li, Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature 528 (2015), pp. 539–543. doi: 10.1038/nature16445
  • N. Takata, Y. Ohtake, K. Kita, K. Kitagawa and N. Tsuji, Increasing the ductility of ultrafine-grained copper alloy by introducing fine precipitates. Scr. Mater 60 (2009), pp. 590–593. doi: 10.1016/j.scriptamat.2008.12.018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.