389
Views
7
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effect of doping Zn atom on the structural stability, mechanical and thermodynamic properties of AlLi phase in Mg–Li alloys from first-principles calculations

, , , , , , & show all
Pages 1849-1867 | Received 11 Apr 2019, Accepted 18 Feb 2020, Published online: 19 Mar 2020

References

  • Z.X. Wu and W.A. Curtin, The origins of high hardening and low ductility in magnesium. Nature 526 (2015), pp. 62–67. doi: 10.1038/nature15364
  • W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge, Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng. A 280 (2000), pp. 37–49. doi: 10.1016/S0921-5093(99)00653-X
  • H. Huang, W. Wang, Q. Yuan, X. Rao, Y. Jing, G. Yi, L. Luo, and Y. Liu, Pressure-dependence of mechanical and thermodynamic properties of Al3Zr in Al–Li alloys from first-principles calculations. Philos. Mag. 99 (2019), pp. 971–991. doi: 10.1080/14786435.2019.1567946
  • M.K. Kulekci, Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 39 (2008), pp. 851–865. doi: 10.1007/s00170-007-1279-2
  • A. Suzuki, N.D. Saddock, J.W. Jones, and T.M. Pollock, Solidification paths and eutectic intermetallic phases in Mg-Al-Ca ternary alloys. Acta Mater. 53 (2005), pp. 2823–2834. doi: 10.1016/j.actamat.2005.03.001
  • T.T.T. Trang, J.H. Zhang, J.H. Kim, A. Zargaran, J.H. Hwang, B.C. Suh, and N.J. Kim, Designing a magnesium alloy with high strength and high formability. Nat. Commun. 9(1) (2018), p. 2522. doi: 10.1038/s41467-018-04981-4
  • S.Y. Gao, X.H. Chen, F.S. Pan, K. Song, C.Y. Zhao, L.Z. Liu, X.F. Liu, and D. Zhao, Effect of secondary phase on the electromagnetic shielding effectiveness of magnesium alloy. Sci. Rep. 8(1) (2018), p. 1625. doi: 10.1038/s41598-018-19933-7
  • H. Fu, W.S. Wu, Y. Dou, B.Z. Liu, H.N. Li, and Q.M. Peng, Hydrogen diffusion kinetics and structural integrity of superhigh pressure Mg-5 wt%Ni alloys with dendrite interface. J. Power Sources 320 (2016), pp. 212–221. doi: 10.1016/j.jpowsour.2016.04.045
  • S. Sandlobes, M. Friak, S. Zaefferer, A. Dick, S. Yi, D. Letzig, Z. Pei, L.F. Zhu, J. Neugebauer, and D. Raabe, The relation between ductility and stacking fault energies in Mg and Mg-Y alloys. Acta Mater. 60 (2012), pp. 3011–3021. doi: 10.1016/j.actamat.2012.02.006
  • R.G. Guan, A.F. Cipriano, Z.Y. Zhao, J. Lock, D. Tie, T. Zhao, T. Cui, and H. Liu, Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications–alloy processing, microstructure, mechanical properties, and biodegradation. Mater. Sci. Eng. A 33 (2013), pp. 3661–3669. doi: 10.1016/j.msec.2013.04.054
  • M. Duan, L. Luo, and Y. Liu, Microstructural evolution of AZ31 Mg alloy with surface mechanical attrition treatment: Grain and texture gradient. J. Alloys Compd. 823 (2020), p. 153691. doi: 10.1016/j.jallcom.2020.153691
  • W.Q. Xu, N. Birbilis, G. Sha, Y. Wang, J.E. Daniels, Y. Xiao, and M. Ferry, A high-specific-strength and corrosion-resistant magnesium alloy. Nat. Mater. 14 (2015), pp. 1229–1235. doi: 10.1038/nmat4435
  • P.E. Blochl, O. Jepsen, and O.K. Andersen, Improved tetrahedron method for brillouin-zone integrations. Phys Rev B 49 (1994), pp. 16223–16233. doi: 10.1103/PhysRevB.49.16223
  • C.Q. Li, D.K. Xu, B.J. Wang, L.Y. Sheng, Y.X. Qiao, and E.H. Han, Natural ageing responses of duplex structured Mg-Li based alloys. Sci. Rep. 7 (2017), p. 11. doi: 10.1038/s41598-017-00052-8
  • A.A. Nayeb-Hashemi, J.B. Clark, and A.D. Pelton, The Li-Mg (lithium-magnesium) system. Bull. Alloy Ph. Diagr. 5 (1984), pp. 365–374. doi: 10.1007/BF02872951
  • W. Gasior, Z. Moser, and W. Zakulski, Thermodynamic studies and the phase diagram of the Li-Sn system. J. Non-Cryst. Solids 205-207 (1996), pp. 379–382. doi: 10.1016/S0022-3093(96)00446-2
  • F. Zhong, H. Wu, Y. Jiao, R. Wu, J. Zhang, L. Hou, and M. Zhang, Effect of Y and Ce on the microstructure, mechanical properties and anisotropy of as-rolled Mg-8Li-1Al alloy. J. Mater. Sci. Technol. 39 (2020), pp. 124–134. doi: 10.1016/j.jmst.2019.04.045
  • Y.W. Jian, W.P. Hong, P.C. Hsu, C.C. Hsu, and S. Lee, Microstructures and mechanical behavior of processed Mg-Li-Zn alloy. Mater. Sci. Forum 419 (2003), pp. 165–170.
  • G.S. Song, M. Staiger, and M. Kral, Some new characteristics of the strengthening phase in β-phase magnesium–lithium alloys containing aluminum and beryllium. Mater. Sci. Eng. A 371 (2004), pp. 371–376. doi: 10.1016/j.msea.2004.01.017
  • B.J. Wang, D.K. Xu, S.D. Wang, L.Y. Sheng, R.-C. Zeng, and E.-H. Han, Influence of solution treatment on the corrosion fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy. Int. J. Fatigue 120 (2019), pp. 46–55. doi: 10.1016/j.ijfatigue.2018.10.019
  • S. Yin, W. Duan, W. Liu, L. Wu, J. Yu, Z. Zhao, M. Liu, P. Wang, J. Cui, and Z. Zhang, Influence of specific second phases on corrosion behaviors of Mg-Zn-Gd-Zr alloys. Corros. Sci. 166 (2019), p. 108419. doi: 10.1016/j.corsci.2019.108419
  • A. Yu Huashun, G. Min, and X. Chen, Effect of alloying elements on Mg-Li base alloys. Rare Met. Mater. Eng. 25 (1996), pp. 1–5.
  • A. Sanschagrin, R. Tremblay, R. Angers, and D. Dubé, Mechanical properties and microstructure of new magnesium—lithium base alloys. Mater. Sci. Eng. A 220 (1996), pp. 69–77. doi: 10.1016/S0921-5093(96)10460-3
  • J. Li, Q. Zhikun, W. Ruizhi, and Z. Milin, Effects of Cu addition on the microstructure and hardness of Mg–5Li–3Al–2Zn alloy. Mater. Sci. Eng. A 527 (2010), pp. 2780–2783. doi: 10.1016/j.msea.2010.01.021
  • P. Hohenberg and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136 (1964), pp. B864–BB71. doi: 10.1103/PhysRev.136.B864
  • W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140 (1965), pp. A1133–A1138. doi: 10.1103/PhysRev.140.A1133
  • M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14 (2002), pp. 2717–2744. doi: 10.1088/0953-8984/14/11/301
  • J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X.L. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100 (2008), p. 4. doi: 10.1103/PhysRevLett.100.136406
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13 (1976), pp. 5188–5192. doi: 10.1103/PhysRevB.13.5188
  • T.H. Fischer and J. Almlof, General-methods for geometry and wave-function optimization. J. Phys. Chem. 96 (1992), pp. 9768–9774. doi: 10.1021/j100203a036
  • J. Feng, B. Xiao, R. Zhou, W. Pan, and D.R. Clarke, Anisotropic elastic and thermal properties of the double perovskite slab-rock salt layer Ln2SrAl2O7 (Ln = La, Nd, Sm, Eu, Gd or Dy) natural superlattice structure. Acta Mater. 60 (2012), pp. 3380–3392. doi: 10.1016/j.actamat.2012.03.004
  • C.Z. Fan, S.Y. Zeng, L.X. Li, Z.J. Zhan, R.P. Liu, W.K. Wang, P. Zhang, and Y.G. Yao, Potential superhard osmium dinitride with fluorite and pyrite structure: First-principles calculations. Phys. Rev. B 74 (2006), p. 6.
  • K. Kuriyama, S. Saito, and K. Iwamura, Ultrasonic study on the elastic moduli of the NaTl (B32) structure. J. Phys. Chem. Solids 40 (1979), pp. 457–461. doi: 10.1016/0022-3697(79)90062-3
  • P. Eckerlin, I. Maak, and A. Rabenau, Über Mischkristallbildung in den Systemen (NH4)3AlF6-(NH4)3GaF6 und LiAl-LiGa. Z. Anorg. Allg. Chem. 327 (1964), pp. 143–146. doi: 10.1002/zaac.19643270307
  • B.R. Sahu, Electronic structure and bonding of ultralight LiMg. Mater. Sci. Eng. B 49 (1997), pp. 74–78. doi: 10.1016/S0921-5107(97)00068-8
  • N.I. Medvedeva, Y.N. Gornostyrev, D.L. Novikov, O.N. Mryasov, and A.J. Freeman, Ternary site preference energies, size misfits and solid solution hardening in NiAl and FeAl. Acta Mater. 46 (1998), pp. 3433–3442. doi: 10.1016/S1359-6454(98)00042-1
  • X. Wang, First Principle Study on Structure and Properties of Al, Zn and Cd Doping Mg-Li Phase Interface, College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, 2013.
  • M.-M. Wu, L. Wen, B.-Y. Tang, L.-M. Peng, and W.-J. Ding, First-principles study of elastic and electronic properties of MgZn2 and ScZn2 phases in Mg–Sc–Zn alloy. J. Alloys Compd. 506 (2010), pp. 412–417. doi: 10.1016/j.jallcom.2010.07.018
  • Y. Guo, Y. Zhao, H. Hou, X. Yang, Z. Wei, and L.J.S.C. Qi, Effects of pressure on electronic structural, mechanical properties of the AlLi,Al2Y,Al2La phase. Spec. Cast. Nonferrous Alloys 37 (2017), pp. 319–323.
  • J.Y. Wu, The Calculation Study on the Alloy Phase in Typical Wrought Magnesium Alloy, College of Material Science and Engineering, Chongqing University, Chongqing, 2012.
  • Y. Liu, W.C. Hu, D.J. Li, X.Q. Zeng, and C.S. Xu, Theoretical predictions of the structural and thermodynamic properties of MgZn2 Laves phase under high pressure. Appl. Phys. A Mater. Sci. Process. 115 (2014), pp. 323–331. doi: 10.1007/s00339-013-7822-0
  • J.Y. Wang and Y.C. Zhou, Dependence of elastic stiffness on electronic band structure of nanolaminate M2AlC (M = Ti,V,Nb, and Cr) ceramics. Phys. Rev. B 69 (2004), p. 9.
  • C.P. Liang and G. Hao Ran, Phase stability, mechanical property, and electronic structure of Mg–Li system. J. Alloys Compd. 489 (2010), pp. 130–135. doi: 10.1016/j.jallcom.2009.09.032
  • Z.W. Huang, Y.H. Zhao, H. Hou, and P.D. Han, Electronic structural, elastic properties and thermodynamics of Mg17Al12, Mg2Si and Al2Y phases from first-principles calculations. Phys. B 407 (2012), pp. 1075–1081. doi: 10.1016/j.physb.2011.12.132
  • W.C. Hu, Y. Liu, D.J. Li, H.L. Jin, Y.X. Xu, C.S. Xu, and X.Q. Zeng, Structural, anisotropic elastic and electronic properties of Sr–Zn binary system intermetallic compounds: A first-principles study. Comput. Mater. Sci. 99 (2015), pp. 381–389. doi: 10.1016/j.commatsci.2014.12.034
  • Y. Liu, W.C. Hu, D.J. Li, X.Q. Zeng, C.S. Xu, and X.J. Yang, Structural, electronic and thermodynamic properties of BiF3-type Mg3Gd compound: A first-principle study. Phys. B 432 (2014), pp. 33–39. doi: 10.1016/j.physb.2013.09.022
  • R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. London Sect. A 65 (1952), p. 349. doi: 10.1088/0370-1298/65/5/307
  • S.I. Ranganathan and M. Ostoja-Starzewski, Universal elastic anisotropy index. Phys. Rev. Lett. 101 (2008), p. 4. doi: 10.1103/PhysRevLett.101.055504
  • Y. Liu, W.C. Hu, D.J. Li, K. Li, H.L. Jin, Y.X. Xu, C.S. Xu, and X.Q. Zeng, Mechanical, electronic and thermodynamic properties of C14-type AMg2 (A = Ca, Sr and Ba) compounds from first principles calculations. Comput. Mater. Sci. 97 (2015), pp. 75–85. doi: 10.1016/j.commatsci.2014.10.005
  • W.C. Hu, Y. Liu, D.J. Li, X.Q. Zeng, and C.S. Xu, Mechanical and thermodynamic properties of Al3Sc and Al3Li precipitates in Al–Li–Sc alloys from first-principles calculations. Phys. B 427 (2013), pp. 85–90. doi: 10.1016/j.physb.2013.06.038
  • W.-C. Hu, Y. Liu, D.-J. Li, K. Li, H.-L. Jin, Y.-X. Xu, C.-S. Xu, and X.-Q. Zeng, A first-principles study on structural stability and mechanical properties of polar intermetallic phases CaZn2 and SrZn2. Philos. Mag. 94 (2014), pp. 3945–3959. doi: 10.1080/14786435.2014.971903
  • O.L. Anderson, A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 24 (1963), pp. 909–917. doi: 10.1016/0022-3697(63)90067-2
  • Y. Hao, J. Zhu, L. Zhang, H. Ren, and J. Qu, Structure phase transition and elastic properties of hafnium: First-principles study. Philos. Mag. Lett. 91 (2011), pp. 61–69. doi: 10.1080/09500839.2010.529087
  • A. Bouhemadou, Prediction study of structural and elastic properties under pressure effect of M2SnC (M = Ti, Zr, Nb, Hf). Phys. B Condens. Matter 403 (2008), pp. 2707–2713. doi: 10.1016/j.physb.2008.02.014
  • L. Sun, Y.M. Gao, B. Xiao, Y.F. Li, and G.L. Wang, Anisotropic elastic and thermal properties of titanium borides by first-principles calculations. J. Alloys Compd. 579 (2013), pp. 457–467. doi: 10.1016/j.jallcom.2013.06.119
  • P.K. Das, A. Chowdhury, N. Mandal, and A. Arya, First-principles characterisation of the pressure-dependent elastic anisotropy of SnO2 polymorphs. Philos. Mag. 96 (2016), pp. 1861–1882. doi: 10.1080/14786435.2016.1177228
  • W.-C. Hu, Y. Liu, D.-J. Li, X.-Q. Zeng, and C.-S. Xu, First-principles study of structural and electronic properties of C14-type Laves phase Al2Zr and Al2Hf. Comput. Mater. Sci. 83 (2014), pp. 27–34. doi: 10.1016/j.commatsci.2013.10.029
  • M. Born and K. Huang, Dynamical theory of crystal lattices. Am. J. Phys. 23 (1955), pp. 474–474. doi: 10.1119/1.1934059
  • R. Mittal, S.L. Chaplot, and N. Choudhury, Modeling of anomalous thermodynamic properties using lattice dynamics and inelastic neutron scattering. Prog. Mater. Sci. 51 (2006), pp. 211–286. doi: 10.1016/j.pmatsci.2005.08.001
  • S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73 (2001), pp. 515–562. doi: 10.1103/RevModPhys.73.515
  • X. Gonze and C. Lee, Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55 (1997), pp. 10355–10368. doi: 10.1103/PhysRevB.55.10355
  • A. van de Walle and G. Ceder, The effect of lattice vibrations on substitutional alloy thermodynamics. Rev. Mod. Phys. 74 (2002), pp. 11–45. doi: 10.1103/RevModPhys.74.11
  • A. van de Walle, M. Asta, and G. Ceder, The alloy theoretic automated toolkit: A user guide. Calphad 26 (2002), pp. 539–553. doi: 10.1016/S0364-5916(02)80006-2
  • N.D.M. Hine, M. Robinson, P.D. Haynes, C.K. Skylaris, M.C. Payne, and A.A. Mostofi, Accurate ionic forces and geometry optimization in linear-scaling density-functional theory with local orbitals. Phys. Rev. B 83 (2011), p. 10. doi: 10.1103/PhysRevB.83.195102
  • E. Deligoz, K. Colakoglu, H. Ozisik, and Y.O. Cifti, The first principles investigation of lattice dynamical and thermodynamical properties of Al2Ca and Al2Mg compounds in the cubic Laves structure. Comput. Mater. Sci. 68 (2013), pp. 27–31. doi: 10.1016/j.commatsci.2012.10.006
  • L.F. Huang, P.L. Gong, and Z. Zeng, Correlation between structure, phonon spectra, thermal expansion, and thermomechanics of single-layer MoS2. Phys. Rev. B 90 (2014), p. 7.
  • P.K. Jha, Phonon spectra and vibrational mode instability of MgCNi3. Phys. Rev. B 72 (2005), p. 214502. doi: 10.1103/PhysRevB.72.214502
  • H. Peng, C.L. Wang, J.C. Li, R.Z. Zhang, M.X. Wang, H.C. Wang, Y. Sun, and M. Sheng, Lattice dynamic properties of BaSi2 and BaGe2 from first principle calculations. Phys. Lett. A 374 (2010), pp. 3797–3800. doi: 10.1016/j.physleta.2010.07.037
  • E. Deligoz, K. Colakoglu, H.B. Ozisik, and Y.O. Ciftci, Lattice vibrational properties of Al2X (X = Sc, Y) from density functional theory calculations. Solid State Commun. 152 (2012), pp. 76–80. doi: 10.1016/j.ssc.2011.10.041

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.