128
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Formation of low-temperature deformation-induced segregations of nickel in Fe–Ni-based austenitic alloys

, , , , , , & show all
Pages 1868-1879 | Received 07 Oct 2019, Accepted 17 Mar 2020, Published online: 24 Apr 2020

References

  • A.I. Deryagin, V.A. Zavalishin, and V.V. Sagaradze, Atomic redistribution of alloying elements in nanocrystalline austenitic chromium-nickel steels obtained by strong plastic deformation. Nano Struct. Mater. 10 (1998), pp. 411–418. doi: 10.1016/S0965-9773(98)00081-6
  • A.R. Kuznetsov, S.A. Starikov, V.V. Sagaradze, I.A. Stepanov, V.A. Pechenkin and M. Giersig, Studying deformation-induced segregation in the Fe-Cr-Ni alloy, Phys. Met. Metall. 98 (2004), pp. 294–299.
  • A.I. Deryagin, V.A. Zavalishin, V.V. Sagaradze, A.R. Kuznetsov, N.F. Vil’danova, V.A. Ivchenko, and B.M. Efros, Effect of composition and temperature on the redistribution of alloying elements in Fe-Cr-Ni alloys during cold deformation. Phys. Met. Metall. 106 (2008), pp. 291–301. doi: 10.1134/S0031918X08090093
  • T. Kajitani, J.-M. Drezet, and M. Rappaz, Numerical simulation of deformation-induced segregation in continuous casting of steel. Met. Mat. Trans. A 32 (2001), pp. 1479–1491. doi: 10.1007/s11661-001-0236-1
  • M.M. Abramova, N.A. Enikeev, R.Z. Valiev, A. Etienne, B. Radiguet, Y. Ivanisenko, and X. Sauvage, Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel. Mater. Lett. 136 (2014), pp. 349–352. doi: 10.1016/j.matlet.2014.07.188
  • S. Watanabe, N. Sakaguchi, N. Hashimoto, M. Nakamura, H. Takahashi, C. Namba, and N.Q. Lam, Radiation-induced segregation accompanied by grain boundary migration in austenitic stainless steel. J. Nucl. Mat. 232 (1996), pp. 113–118. doi: 10.1016/S0022-3115(96)00433-3
  • I.A. Stepanov, V.A. Pechenkin, and Y.V. Konobeev, Modeling of radiation-induced segregation at grain boundaries in Fe–Cr–Ni. J. Nucl. Mat. 329–333 (2004), pp. 1214–1218. doi: 10.1016/j.jnucmat.2004.04.259
  • J.R. Trelewicz and C.A. Schuh, Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys. Rev. B 79 (2009), art. 094112. doi: 10.1103/PhysRevB.79.094112
  • T. Toyama, Y. Nozawa, W. Van Renterghem, Y. Matsukawa, M. Hatakeyama, Y. Nagai, A. Al Mazouzi, and S. Van Dyck, Grain boundary segregation in neutron-irradiated 304 stainless steel studied by atom probe tomography. J. Nucl. Mat. 425 (2012), pp. 71–75. doi: 10.1016/j.jnucmat.2011.11.072
  • V.V. Sagaradze, V.A. Shabashov, N.V. Kataeva, V.A. Zavalishin, K.A. Kozlov, A.R. Kuznetsov, A.V. Litvinov, and V.P. Pilyugin, Deformation-induced dissolution of the intermetallics Ni3Ti and Ni3Al in austenitic steels at cryogenic temperatures. Phil. Mag. 96 (2016), pp. 1724–1742. doi: 10.1080/14786435.2016.1162915
  • V.V. Sagaradze, V.A. Shabashov, N.V. Kataeva, K.A. Kozlov, A.R. Kuznetsov, and A.V. Litvinov, Anomalous diffusion processes “dissolution-precipitation” of γ'-phase Ni3Al in Fe-Ni-Al alloy during low-temperature deformation. Mat. Lett. 172 (2016), pp. 207–210. doi: 10.1016/j.matlet.2015.11.078
  • V. Sagaradze, V. Shabashov, N. Kataeva, K. Kozlov, V. Arbuzov, S. Danilov, and Y. Ustyugov, Low temperature diffusion transformations in Fe–Ni–Ti alloys during deformation and irradiation. Met. Mat. Int. 24 (2018), pp. 249–254. doi: 10.1007/s12540-018-0046-2
  • M.V. Degtyarev, T.I. Chashchukhina, L.M. Voronova, A.M. Patselov, and V.P. Pilyugin, Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure torsion. Acta Mater. 55 (2007), pp. 6039–6050. doi: 10.1016/j.actamat.2007.04.017
  • V.V. Sagaradze, N.V. Kataeva, M.F. Klyukina, V.A. Zavalishin, K.A. Kozlov, V.V. Makarov, and V.A. Shabashov, Visualization of concentration micro-inhomogeneities in Fe–Ni alloys. Phys. Met. Metall. 119 (2018), pp. 1217–1221. doi: 10.1134/S0031918X18120189
  • A.D. Korotaev, A.N. Tyumentsev, and I.Y. Litovchenko, Defect structure and stress field in the zones of deformation localization in high-strength metallic alloys. Phys. Met. Metall. 90(Suppl. 1) (2000), pp. 36–47.
  • R.M. Bozorth, Ferromagnetism, D. Van Nostrand Company Inc., New York, 1951, p. 968.
  • V.V. Sagaradze, V.A. Zavalishin, N.V. Kataeva, I.G. Kabanova, I.I. Kositsina, M.F. Klyukina, A.I. Valiullin, and V.A. Kazantsev, Using an intermediate nanocrystalline γ phase for producing austenitic steels with a controllable thermal expansion coefficient. Phys. Met. Metall 115 (2014), pp. 486–499. doi: 10.1134/S0031918X14050081
  • V.A. Zavalishin, A.I. Deryagin, and V.V. Sagaradze, Redistribution of alloying elements in Fe-Cr-Ni alloys upon cold deformation: A phenomenological description of changes in magnetic properties. Phys. Met. Metall. 92 (2001), pp. 46–57.
  • A. Chamberod, J. Laugier, and J.M. Penisson, Electron irradiation effect on iron-nickel invar alloys. J. Magn. Mat. 10 (1979), pp. 139–144. doi: 10.1016/0304-8853(79)90165-3
  • J.F. Albertsen, J.M. Knudsen, N.O. Roy-Poulsen, and L. Vistisen, Tetragonal lattice of Tetrataenite (ordered Fe-Ni, 50-50) from 4 Meteorites. Phys. Scr. 23 (1981), pp. 301–306. doi: 10.1088/0031-8949/23/3/015
  • S.A. Starikov, A.R. Kuznetsov, V.V. Sagaradze, Y.N. Gornostyrev, V.A. Pechenkin, and I.A. Stepanov, Formation of grain boundary segregations in alloy Fe-Cr-Ni during strong deformation and under radiation. Phys. Met. Metall. 113 (2012), pp. 241–245. doi: 10.1134/S0031918X12030155

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.