588
Views
9
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

AlB2 and MgB2: a comparative study of their electronic, phonon and superconductivity properties via first principles

, , &
Pages 2275-2289 | Received 11 Sep 2019, Accepted 19 Mar 2020, Published online: 10 Apr 2020

References

  • J. Nagamatsu, N. Nakagaua, T. Muranaka, Y. Zenitani and J. Akimitsu, Superconductivity at 39 K in magnesium diboride. Nature (London) 410 (2001), pp. 632001. doi: 10.1038/35065039
  • H.J. Choi, D. Roundy, H. Sun, M.L. Cohen and S.G. Louie, The origin of the anomalous superconducting properties of MgB2. Nature 418 (2002), pp. 758–760. doi: 10.1038/nature00898
  • J.M. An and W.E. Pickett, Superconductivity of MgB2: covalent bonds driven metallic. Phys. Rev. Lett 86 (2001), pp. 4366. doi: 10.1103/PhysRevLett.86.4366
  • H.J. Choi, D. Roundy, H. Sun, M.L. Cohen and S.G. Louie, First-principles calculation of the superconducting transition in MgB2 within the anisotropic Eliashberg formalism. Phys. Rev B 66 (2002), pp. 020513(R). doi: 10.1103/PhysRevB.66.020513
  • E.R. Margine and F. Giustino, Anisotropic Migdal-Eliashberg theory using Wannier functions. Phys Rev B 87 (2013), pp. 024505. doi: 10.1103/PhysRevB.87.024505
  • A. Aperis, P. Maldonado and P.M. Oppeneer, Ab initio theory of magnetic-field-induced odd-frequency two-band superconductivity in MgB2. Phys Rev B 92 (2015), pp. 054516. doi: 10.1103/PhysRevB.92.054516
  • M.L. Whittaker and R.A. Cutler, Effect of synthesis atmosphere, wetting, and compaction on the purity of AlB2. J. Solid State Chem. 201 (2013), pp. 93–100. doi: 10.1016/j.jssc.2013.02.027
  • M.T. Agne, B. Anasori and M.W. Barsoum, Reactions between Ti2AlC, B4C, and Al and phase equilibria at 1000 °C in the Al-Ti-B-C Quaternary system. Phase Equilib. Diffus 36 (2015), pp. 169. doi: 10.1007/s11669-015-0371-9
  • M. Humood, J.L. Meyer, S.V. Verkhoturov, T. Ozkan, M. Eller, E.A. Schweikert, J. Economy and A.A. Polycarpou, 2D AlB2 flakes for epitaxial thin film growth. J. Mater. Res 33(16) (2018. doi: 10.1557/jmr.2018.173
  • D. Billington, D. Ernsting, T.E. Millichamp and S.B. Dugdale, Electron–phonon superconductivity in BaSn5. Philos. Mag. 95 (2015), pp. 1728–1737. doi: 10.1080/14786435.2015.1040480
  • E.S. Penev, A. Kutana and B.I. Yakobson, Can two-dimensional boron superconduct? Nano. Lett 4 (2016), pp. 2522–2526. doi: 10.1021/acs.nanolett.6b00070
  • D.P. Young, R.G. Goodrich, P.W. Adams, J.Y. Chan, F.R. Fronczek, F. Drymiotis and L.L. Henry, Superconducting properties of BeB2.75. Phys. Rev. B 65 (2002), pp. 180518(R). doi: 10.1103/PhysRevB.65.180518
  • K.-P. Bohnen, R. Heid and B. Renker, Phonon dispersion and electron-phonon coupling in MgB2 and AlB2. Phys. Rev. Lett 86 (2001), pp. 5771. doi: 10.1103/PhysRevLett.86.5771
  • I. Loa, K. Kunc and K. Syassen, Crystal structure and lattice dynamics of AlB2 under pressure and implications for MgB2. Phys. Rev B 66 (2002), pp. 134101. doi: 10.1103/PhysRevB.66.134101
  • Y. Wang, J. Lv, Y. Ma, T. Cui and G. Zou, Superconductivity of MgB2 under ultrahigh pressure: a first-principles study. Phys Rev B 80 (2009), pp. 092505. doi: 10.1103/PhysRevB.80.092505
  • P.P. Singh, From E2g to other modes: effects of pressure on electron-phonon interaction in MgB2. Phys. Rev. Lett 97 (2006), pp. 247002. doi: 10.1103/PhysRevLett.97.247002
  • J.A. Alarco, P.C. Talbotab and I.D.R. Mackinnon, Phonon anomalies predict superconducting Tc for AlB2-type structures. Phys. Chem. Chem. Phys 17 (2015), pp. 25090. doi: 10.1039/C5CP04402B
  • G. Profeta, A. Continenza and S. Massidda, Phonon and electron-phonon renormalization in Al-doped MgB2. Phys. Rev B 68 (2003), pp. 144508. doi: 10.1103/PhysRevB.68.144508
  • B. Renker, K.B. Bohnen, R. Heid, D. Ernst, H. Schober, M. Koza, P. Adelmann, P. Schweiss and T. Wolf, Strong renormalization of phonon frequencies in Mg1-xAlxB2. Phys. Rev. Lett 88 (2002), pp. 067001. doi: 10.1103/PhysRevLett.88.067001
  • O. De la Peña-Seaman, R. de Coss, R. Heid and K.-P. Bohnen, Effects of Al and C doping on the electronic structure and phonon renormalization in MgB2. Phys. Rev B 79 (2009), pp. 134523. doi: 10.1103/PhysRevB.79.134523
  • J.S. Slusky, N. Rogado, K.A. Regan, M.A. Hayward, P. Khalifah, T. He, K. Inumaru, S.M. Loureiro, M.K. Haas, H.W. Zandbergen and R.J. Cava, Loss of superconductivity with the addition of Al to MgB2 and a structural transition in Mg1-x AlxB2. Nature 410 (2001), pp. 343–345. doi: 10.1038/35066528
  • J. Bekaert, A. Aperis, B. Partoens, P.M. Oppeneer and M.V. Miloševic, Evolution of multigap superconductivity in the atomically thin limit: strain-enhanced three-gap superconductivity in monolayer MgB2. Phys. Rev B 96 (2017), pp. 094510. doi: 10.1103/PhysRevB.96.094510
  • M. Putti, E. Galleani d’Agliano, D. Marré, F. Napoli, M. Tassisto, P. Manfrinetti, A. Palenzona, C. Rizzuto and S. Massidda, Electron transport properties of MgB2 in the normal state. Eur. Phys. J. B 25 (2002), pp. 439.
  • D. Sharma, J. Kumar, A. Vajpayee, R. Kumar, P.K. Ahluwalia and V.P.S. Awana, Comparative experimental and density functional theory (DFT) study of the physical properties of MgB2 and AlB2. J. Supercond. Nov. Magn 24 (2011), pp. 1925. doi: 10.1007/s10948-011-1146-0
  • K.-H. Jin, H. Huang, J.-W. Mei, Z. Liu, L.-K. Lim and F. Liu, Topological superconducting phase in high-Tc superconductor MgB2 with Dirac–nodal-line fermions. npj Comput. Mater 5 (2019), pp. 57.
  • X. Zhou, K.N. Gordon, K.-H. Jin, H. Li, D. Narayan, H. Zhao, H. Zheng, H. Huang, G. Cao, N.D. Zhigadlo, F. Liu and D.S. Dessau, Observation of topological surface state in high temperature superconductor MgB2. Phys. Rev B 100 (2019), pp. 184511. doi: 10.1103/PhysRevB.100.184511
  • D. Takane, S. Souma, K. Nakayama, T. Nakamura, H. Oinuma, K. Hori, K. Horiba, H. Kumigashira, N. Kimura, T. Takahashi and T. Sato, Observation of a Dirac nodal line in AlB2. Phys Rev B 98 (2018), pp. 041101(R). doi: 10.1103/PhysRevB.98.041105
  • J. Li, Q. Xie, J. Liu, R. Li, M. Liu, L. Wang, D. Li, Y. Li and X.-Q. Chen, Phononic Weyl Nodal straight lines in MgB2. Phys. Rev. B 101 (2020), pp. 024301. doi: 10.1103/PhysRevB.101.024301
  • T. Zhang, Z. Song, A. Alexandradinata, H. Weng, C. Fang, L. Lu and Z. Fang, Double-Weyl Phonons in transition-metal monosilicides. Phys. Rev. Lett 120 (2018), pp. 016401. doi: 10.1103/PhysRevLett.120.016401
  • H. Miao, T.T. Zhang, L. Wang, D. Meyers, A.H. Said, Y.L. Wang, Y.G. Shi, H.M. Weng, Z. Fang and M.P.M. Dean, Observation of double Weyl phonons in parity-breaking FeSi. Phys. Rev. Lett 121 (2018), pp. 035302. doi: 10.1103/PhysRevLett.121.035302
  • P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, m. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari and R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21 (2009), pp. 395502.
  • P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R.A. DiStasio Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu and S. Baroni, Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys.: Condens. Matter 29 (2017), pp. 465901.
  • J.P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett 77 (1996), pp. 3865. doi: 10.1103/PhysRevLett.77.3865
  • D. Hamann, M. Schlüter and C. Chiang, Norm-conserving pseudopotentials. Phys. Rev. Lett. 43 (1979), pp. 1494–1497. doi: 10.1103/PhysRevLett.43.1494
  • G. Bachelet, D. Hamann and M. Schlüter, Pseudopotentials that work: from H to Pu. Phys. Rev. B 26 (1982), pp. 4199–4228. doi: 10.1103/PhysRevB.26.4199
  • S. Baroni, S.D. Gironcoli and A.D. Corso, Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys 73 (2001), pp. 515. doi: 10.1103/RevModPhys.73.515
  • G.M. Eliashberg, Interactions between electrons and lattice virbrations in a superconductor. Sov. Phys. JETP 11 (1960), pp. 696.
  • P.B. Allen and B. Mitrovic, Theory of superconducting Tc. Solid State Phys. 37 (1983), pp. 1–92. doi: 10.1016/S0081-1947(08)60665-7
  • M. d'Astuto, R. Heid, B. Renker, F. Weber, H. Schober, O. De la Peña-Seaman, J. Karpinski, N.D. Zhigadlo, A. Bossak and M. Krisch, Nonadiabatic effects in the phonon dispersion of Mg1−xAlxB2. Phys. Rev. B 93 (2016), pp. 180508(R). doi: 10.1103/PhysRevB.93.180508
  • J.A. Alarco, P.C. Talbotab and I.D.R. Mackinnon, Coherent phonon decay and the boron isotope effect for MgB2. Phys. Chem. Chem. Phys 16 (2014), pp. 25386. doi: 10.1039/C4CP04114C
  • N.I. Medvedeva, A.L. Ivanovskii, J.E. Medvedeva and A.J. Freeman, Electronic structure of superconducting MgB2 and related binary and ternary borides. Phys. Rev B 64 (2001), pp. 020502(R). doi: 10.1103/PhysRevB.64.020502
  • I. Loa, K. Kunc and K. Syassen, Crystal structure and lattice dynamics of AlB2 under pressure and implications for MgB2. Phys. Rev B 66 (2002), pp. 134101. doi: 10.1103/PhysRevB.66.134101
  • J. Bekaert, M. Petrov, A. Aperis, P.M. Oppeneer and M.V. Milošević, Hydrogen-Induced high-temperature superconductivity in two-dimensional materials: the example of hydrogenated monolayer MgB2. Phys. Rev. Lett 123 (2019), pp. 077001. doi: 10.1103/PhysRevLett.123.077001
  • H.J. Choi, S.G. Louie and M.L. Cohen, Anisotropic Eliashberg theory for superconductivity in compressed and doped MgB2. Phys. Rev B 79 (2019), pp. 094518. doi: 10.1103/PhysRevB.79.094518
  • S. Baroni, P. Giannozzi and E. Isaev, Density-functional perturbation theory for quasi-harmonic calculations. Rev. Mineral. Geochem 71 (2010), pp. 39. doi: 10.2138/rmg.2010.71.3
  • M.A. Susner, M. Bhatia, M.D. Sumption and E.W. Collings, Electrical resistivity, Debye temperature, and connectivity in heavily doped bulk MgB2 superconductors. J. Applied. Phys 105 (2009), pp. 103916. doi: 10.1063/1.3132096
  • Z.F. Wei, G.C. Che, F.M. Wang, W.C. Wang, M. He and X.L. Chen, Debye temperature of MgB2. Mod. Phys. Lett. B 15 (2001), pp. 1109–1115. doi: 10.1142/S0217984901002889
  • E. Morosan, H.W. Zandbergen, B.S. Dennis, J.W.G. Bos, Y. Onose, T. Klimczuk, A.P. Ramirez, N.P. Ong and R.J. Cava, Superconductivity in CuxTiSe2. Nat. Phys. 2 (2006), pp. 544–550. doi: 10.1038/nphys360
  • Y.S. Hor, A.J. Williams, J.G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H.W. Zandbergen, A. Yazdani, N.P. Ong and R.J. Cava, Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator. Phys. Rev. Lett 104 (2010), pp. 057001. doi: 10.1103/PhysRevLett.104.057001
  • X.-L. Zhang and W.-M. Liu, Electron-phonon coupling and its implication for the superconducting topological insulators. Sci. Rep 5 (2015), pp. 8964. doi: 10.1038/srep08964
  • C. Cheng, J.-T. Sun, M. Liu, X.-R. Chen and S. Meng, Tunable electron-phonon coupling superconductivity in platinum diselenide. Phys. Rev. Materials 1 (2017), pp. 074804. doi: 10.1103/PhysRevMaterials.1.074804
  • C. Cheng, J.-T. Sun, H. Liu, H.-X. Fu, J. Zhang, X.-R. Chen and S. Meng, Suppressed superconductivity in substrate-supported β12 borophene by tensile strain and electron doping. 2D Materals 4 (2017), pp. 025032. doi: 10.1088/2053-1583/aa5e1b
  • W.L. McMillan, Transition temperature of strong-coupled superconductors. Phys. Rev 167 (1968), pp. 331–344. doi: 10.1103/PhysRev.167.331
  • P.B. Allen, Neutron spectroscopy of superconductors. Phys. Rev B 6 (1972), pp. 2577. doi: 10.1103/PhysRevB.6.2577
  • P.B. Allen and R. Dynes, Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev B 12 (1975), pp. 905. doi: 10.1103/PhysRevB.12.905
  • B. Lorenz, R.L. Meng and C.W. Chu, High-pressure study on MgB2. Phys. Rev. B 64 (2001), pp. 012507. doi: 10.1103/PhysRevB.64.012507
  • A.V. Pogrebnyakov, J.M. Redwing, S. Raghavan, V. Vaithyanathan, D.G. Schlom, S.Y. Xu, Q. Li, D.A. Tenne, A. Soukiassian, X.X. Xi, M.D. Johannes, D. Kasinathan, W.E. Pickett, J.S. Wu and J.C.H. Spence, Enhancement of the superconducting transition temperature of MgB2 by a strain-induced bond-stretching mode softening. Phys. Rev. Lett 93 (2004), pp. 147006. doi: 10.1103/PhysRevLett.93.147006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.