227
Views
5
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Amorphous and ‘crystalline’ penta-silicene

, &
Pages 1962-1981 | Received 21 Jun 2019, Accepted 26 Mar 2020, Published online: 17 Apr 2020

References

  • S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, and P. Jena, Penta-graphene: A new carbon allotrope. Proc. Natl. Acad. Sci. USA. 191 (2015), pp. 2372–2377. doi: 10.1073/pnas.1416591112
  • C.P. Ewels, X. Rocquefelte, H.W. Kroto, M.J. Rayson, and P.R. Briddon, Predicting experimentally stable allotropes: Instability of penta-graphene, Proc. Natl. Acad. Sci. USA. 112 (2015), pp. 15609–15612. doi: 10.1073/pnas.1520402112
  • T. Stauber, J.I. Beltran, and J. Schliemann, Tight-binding approach to penta-graphene, Sci. Rep. 6 (2016), pp. 22672. doi: 10.1038/srep22672
  • S.W. Cranford, When is 6 less than 5? Penta-to hexa-graphene transition, Carbon. NY. 96 (2016), pp. 421–428. doi: 10.1016/j.carbon.2015.09.092
  • W. Xu, C. Zhang, and B. Li, Thermal conductivity of penta-graphene from molecular dynamics study, J. Chem. Phys. 143 (2015), pp. 154703. doi: 10.1063/1.4933311
  • X. Wu, V. Varshney, J. Lee, T. Zhang, J.L. Wohwend, A.K. Roy, and T. Luo, Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity, Nano Lett. 16 (2016), pp. 3925–3935. doi: 10.1021/acs.nanolett.6b01536
  • Y.-Y. Zhang, Q.-X. Pei, Y. Cheng, Y.W. Zhang, and X. Zhang, Thermal conductivity of penta-graphene: The role of chemical functionalization, Comp. Mater. Sci. 137 (2017), pp. 195. doi: 10.1016/j.commatsci.2017.05.042
  • M.Q. Le, Mechanical properties of penta-graphene, hydrogenated penta-graphene, and penta-CN2 sheets, Comp. Mater. Sci. 136 (2017), pp. 181. doi: 10.1016/j.commatsci.2017.05.004
  • J.N. Grima, S. Winczewski, L. Mizzi, M.C. Grech, R. Cauchi, R. Gatt, D. Attard, K.W. Wojciechowski, and J. Rybicki, Tailoring graphene to achieve negative Poisson's ratio properties, Adv. Mater. 27 (2014), pp. 1455–1459. doi: 10.1002/adma.201404106
  • H. Liu, G. Qin, Y. Lin, and M. Hu, Disparate strain dependent thermal conductivity of two-dimensional penta-structures, Nano Lett. 16 (2016), pp. 3831–3842. doi: 10.1021/acs.nanolett.6b01311
  • B. Xiao, Y.-C. Li, X.-F. Yu, and J.-B. Cheng, Penta-graphene: a promising anode material as the Li/Na-ion battery with both extremely high theoretical capacity and fast charge/discharge rate, ACS Appl. Mater. Interfaces 8 (2016), pp. 35342–35352. doi: 10.1021/acsami.6b12727
  • S. Winczewski, M.Y. Shaheen, and J. Rybicki, Interatomic potential suitable for the modeling of penta-graphene: Molecular statics/molecular dynamics studies, Carbon. N.Y. 126 (2018), pp. 165–175. doi: 10.1016/j.carbon.2017.10.002
  • S. Ebrahimi, Effect of hydrogen coverage on the buckling of penta-graphene by molecular dynamics simulation, Mol. Simul. 42 (2016), pp. 1485–1489. doi: 10.1080/08927022.2016.1205191
  • Y. Zhang, Q. Pei, Z. Sha, Y. Zhang, and H. Gao, Remarkable enhancement in failure stress and strain of penta-graphene via chemical functionalization, Nano Res. 10 (2017), pp. 3865–3874. doi: 10.1007/s12274-017-1600-9
  • H. Einollahzadeh, R.S. Dariani, and S.M. Fazeli, Computing the band structure and energy gap of penta-graphene by using DFT and G0W0 approximations, Solid State Commun, 229 (2016), pp. 1–4. doi: 10.1016/j.ssc.2015.12.012
  • X. Li, S. Zhang, F.Q. Wang, Y. Guo, J. Liu, and Q. Wang, Tuning the electronic and mechanical properties of penta-graphene via hydrogenation and fluorination, Phys. Chem. Chem. Phys. 18 (2016), pp. 14191–14197. doi: 10.1039/C6CP01092J
  • H. Sun, S. Mukherjee, and C.V. Singh, Mechanical properties of monolayer penta-graphene and phagraphene: A first-principles study, Phys. Chem. Chem. Phys. 18 (2016), pp. 26736–26742. doi: 10.1039/C6CP04595B
  • K. Xia, V.I. Artyukhov, L. Sun, J. Zheng, L. Jiao, B.I. Yakobson, and Y. Zhang, Growth of large-area aligned pentagonal graphene domains on high-index copper surfaces, Nano Res. 9 (2016), pp. 2182–2189. doi: 10.1007/s12274-016-1107-9
  • J. Li, X. Fan, Y. Wei, and G. Chen, Penta-BxNy sheet: A density functional theory study of two-dimensional material, Sci. Rep. 6 (2016), pp. 31840. doi: 10.1038/srep31840
  • S. Liu, B. Liu, X. Shi, J. Lv, S. Niu, M. Yao, Q. Li, R. Liu, T. Cui, and B. Liu, Two-dimensional penta-BP 5 sheets: High-stability, strain-tunable electronic structure and excellent mechanical properties, Sci. Rep. 7 (2017), pp. 2404. doi: 10.1038/s41598-017-02011-9
  • Y. Shao, M. Shao, Y. Kawazoe, X. Shi, and H. Pan, Exploring new two-dimensional monolayers: Pentagonal transition metal borides/carbides (penta-TMB/Cs), J. Mater. Chem. A 6 (2018), pp. 10226–10232. doi: 10.1039/C8TA00635K
  • J. Liu, C.Y. He, N. Jiao, H.P. Xiao, K.W. Zhang, R.Z. Wang, L.Z. Sun, Novel two-dimensional SiC sheet with full pentagon network. (2013). arXiv: 1307.6324.
  • Y. Ding and Y. Wang, Hydrogen-induced stabilization and tunable electronic structures of penta-silicene: A computational study, J. Mater. Chem. C 3 (2015), pp. 11341–11348. doi: 10.1039/C5TC02504D
  • J.I. Cerda, J. Slavinska, G. Le Lay, A.C. Marele, J.-M. Gomez-Rodriguez, and M.E. Davila, Unveiling the pentagonal nature of perfectly aligned single-and double-strand Si nano-ribbons on Ag (110), Nat. Commun. 7 (2016), pp. 13076. doi: 10.1038/ncomms13076
  • Y. Aierken, O. Leenaerts, and F.M. Peeters, A first-principles study of stable few-layer penta-silicene, Phys. Chem. Chem. Phys. 18 (2016), pp. 18486–18492. doi: 10.1039/C6CP03200A
  • D. Wu, S. Wang, S. Zhang, Y. Liu, Y. Ding, B. Yang, and H. Chen, Stabilization of two-dimensional penta-silicene for flexible lithium-ion battery anodes via surface chemistry reconfiguration, Phys. Chem. Chem. Phys. 21 (2019), pp. 1029–1037. doi: 10.1039/C8CP05008B
  • M. Qiao, Y. Wang, Y. Li, and Z. Chen, Tetra-silicene: a semiconducting allotrope of silicene with negative Poisson's ratios, J Phys. Chem. C 121 (2017), pp. 9627–9633. doi: 10.1021/acs.jpcc.7b02413
  • F.H. Stillinger and T.A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B 31 (1985), pp. 5262–5271. doi: 10.1103/PhysRevB.31.5262
  • X. Zhang, H. Xie, M. Hu, H. Bao, S. Yue, G. Qin, and G. Su, Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential, Phys. Rev. B 89 (2014), pp. 054310. doi: 10.1103/PhysRevB.89.054310
  • T.-R. Shan, B.D. Devine, T.W. Kemper, S.B. Sinnott and S.R. Phillpot, Charge-optimized many-body potential for the hafnium/hafnium oxide system, Phys. Rev. B 81 (2010), pp. 125328. doi: 10.1103/PhysRevB.81.125328
  • J.G. Yu, S.B. Sinnott, and S.R. Phillpot, Charge optimized many-body potential for the Si/SiO2 system, Phys Rev B 75 (2007), pp. 085311. doi: 10.1103/PhysRevB.75.085311
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995), pp. 1–19. doi: 10.1006/jcph.1995.1039
  • S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and S. Ciraci, Two-and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102 (2009), pp. 236804. doi: 10.1103/PhysRevLett.102.236804
  • V.V. Hoang, N.H. Giang, and T.Q. Dong, Confined tetra-silicene obtained by cooling from the melt, Comp. Mater. Sci. 158 (2019), pp. 406. doi: 10.1016/j.commatsci.2018.11.034
  • H.A. Huy, N.T. Long, N.L.T. Duong, T.Q. Tuan, O.K. Le, V.V. Hoang, and N.H. Giang, Novel pressure-induced topological phase transitions of supercooled liquid and amorphous silicene, J. Phys. Condens. Matter 31 (2019), pp. 095403. doi: 10.1088/1361-648X/aaf402
  • S. Le Roux and V. Petkov, ISAACS–interactive structure analysis of amorphous and crystalline systems, J. Appl. Crystallogr. 43 (2010), pp. 181–185. doi: 10.1107/S0021889809051929
  • W. Humphrey, A. Dalke, and K. Schulten, VMD: visual molecular dynamics, J. Mol. Graphics 14 (1996), pp. 33–185. doi: 10.1016/0263-7855(96)00018-5
  • M.D. Kluge, J.R. Ray, and A. Rahman, Amorphous-silicon formation by rapid quenching: A molecular-dynamics study, Phys. Rev. B 36 (1987), pp. 4234–4237. doi: 10.1103/PhysRevB.36.4234
  • I. Stich, R. Car, and M. Parrinello, Amorphous silicon studied by ab initio molecular dynamics: Preparation, structure, and properties, Phys. Rev. B 44 (1991), pp. 11092–11104. doi: 10.1103/PhysRevB.44.11092
  • M. Ishimaru, S. Munetoh, and T. Motooka, Generation of amorphous silicon structures by rapid quenching: A molecular-dynamics study, Phys. Rev. B 56 (1997), pp. 15133–15138. doi: 10.1103/PhysRevB.56.15133
  • V.V. Hoang and H.T. Cam Mi, Free-standing silicene obtained by cooling from 2D liquid Si: structure and thermodynamic properties, J. Phys. D Appl. Phys. 47 (2014), pp. 495303. doi: 10.1088/0022-3727/47/49/495303
  • K.J. Strandburg, Two-dimensional melting, Rev. Mod. Phys. 60 (1988), pp. 161–207. doi: 10.1103/RevModPhys.60.161
  • Z. Wang, A.M. Alsayed, A.G. Yodh, and Y. Han, Two-dimensional freezing criteria for crystallizing colloidal monolayers, J. Chem. Phys. 132 (2010), pp. 154501. doi: 10.1063/1.3372618
  • J.Q. Broughton and X.P. Li, Phase diagram of silicon by molecular dynamics, Phys. Rev. B 35 (1987), pp. 9120–9127. doi: 10.1103/PhysRevB.35.9120
  • T. Mizuguchi and T. Odagaki, Glass formation and crystallization of a simple monatomic liquid, Phys. Rev. E 79 (2009), pp. 051501. doi: 10.1103/PhysRevE.79.051501
  • V.V. Hoang and N.T. Long, Amorphous silicene—a view from molecular dynamics simulation, J. Phys. Condens. Matter. 28 (2016), pp. 195401. doi: 10.1088/0953-8984/28/19/195401
  • V.V. Hoang and N.H. Giang, Heating-induced phase transitions in confined amorphous tetra-silicene, Mater. Res. Express 6 (2019), pp. 085202. doi: 10.1088/2053-1591/ab1c71
  • S.T. Skowron, I.V. Lebedeva, A.M. Popov, and E. Bichoutskaia, Energetics of atomic scale structure changes in graphene, Chem. Soc. Rev. 44 (2015), pp. 3143–3176. doi: 10.1039/C4CS00499J
  • H. Terrones, R. Lv, M. Terrones, and M.S. Dresselhaus, The role of defects and doping in 2D graphene sheets and 1D nanoribbons, Rep. Prog. Phys. 75 (2012), pp. 062501. doi: 10.1088/0034-4885/75/6/062501
  • P.A. Dennis and F. Iribarne, Comparative study of defect reactivity in graphene, J. Phys. Chem. C 117 (2013), pp. 19048–19055. doi: 10.1021/jp4061945
  • P.A. Dennis, Density functional investigation of thioepoxidated and thiolated graphene, J. Phys. Chem. C 113 (2009), pp. 5612–5619. doi: 10.1021/jp808599w
  • J.M. de Sousa, A.L. Aguiar, E.C. Girao, A.F. Fonseca, A.G. Souza Filho, and D.S. Galvao, Mechanical properties and fracture patterns of pentagraphene membranes. arxiv.org/pdf/1703.03789.pdf.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.