138
Views
8
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Deconvolution of temperature dependence of conductivity, its reduced activation energy, and Hall-effect data for analysing impurity conduction in n-ZnSe

ORCID Icon
Pages 2018-2039 | Received 25 Oct 2019, Accepted 30 Mar 2020, Published online: 23 Apr 2020

References

  • N.F. Mott and E.A. Davis, Metal-insulator transition in doped semiconductors. Phil. Mag. B 42 (1980), pp. 845–858. doi: 10.1080/01418638008222332
  • H. Fritzsche, Electrical properties of germanium semiconductors at low temperatures. Phys. Rev. 99 (1955), pp. 406–419. doi: 10.1103/PhysRev.99.406
  • H. Fritzsche, Resistivity and Hall coefficient of antimony-doped germanium at low temperatures. J. Phys. Chem. Solids 6 (1958), pp. 69–80. doi: 10.1016/0022-3697(58)90220-8
  • E.A. Davis and W.D. Compton, Compensation dependence of impurity conduction in antimony-doped germanium. Phys. Rev. 140 (1965), pp. A2183–A2194. doi: 10.1103/PhysRev.140.A2183
  • S. Toyotomi, Far-infrared impurity absorption in highly doped n-type silicon. J. Phys. Soc. Jpn. 38 (1975), pp. 175–180. doi: 10.1143/JPSJ.38.175
  • H. V. Löhneysen, Electron-electron interactions and the metal-insulator transition in heavily doped silicon. Ann. Phys. 523 (2011), pp. 599–611. doi: 10.1002/andp.201100034
  • V.F. Bannaya, E.M. Gershenzon, A.P. Mel'nikov, R.I. Rabinovich, and I.E. Trofimov, H– like centers and delocalization of electrons in semiconductors. Sov. Phys. JETP 58 (1983), pp. 434–443.
  • Y. Kajikawa, Reappraisal of conduction and Hall effect due to impurity Hubbard bands in weakly compensated n-GaAs. Phys. Stat. Sol. B 255 (2018), pp. 1800063. doi: 10.1002/pssb.201800063
  • Y. Kajikawa, Significant effects of the D− band on the Hall coefficient and the Hall mobility of n-InP. Phys. Stat. Sol. B 257 (2019), p. 1900354. doi: 10.1002/pssb.201900354
  • Y. Kajikawa, Analysis of low-temperature data of Hall-effect measurements on Ga-doped p-Ge on the basis of an impurity-Hubbard-band model. Phys. Stat. Sol. C 14 (2017), 1700071.
  • Y. Kajikawa, Refined analysis of low-temperature data of Hall-effect measurements on Sb-doped n-Ge on the basis of an impurity-Hubbard-band model. Phys. Stat. Sol. C 14 (2017), 1700151.
  • Y. Kajikawa, Updated analysis of low-temperature data of Hall-effect measurements on P-doped n-Si on the basis of an impurity-Hubbard-band model. Phys. Stat. Sol. C 14 (2017), 1700228.
  • A. G. Zabrodskii, Hopping conduction and density of localized states near the Fermi level. Sov. Phys. Semicond. 11 (1977), pp. 345–347.
  • A.G. Zabrodskii, The Coulomb gap: the view of experimenter. Phil. Mag. B 81 (2001), pp. 1131–1151. doi: 10.1080/13642810108205796
  • A.G. Zabrodskii and K.N. Zinov'eva, Low-temperature conductivity and metal-insulator transition in compensate n-Ge. Sov. Phys. JETP 59 (1984), pp. 425–433.
  • A.G. Zabrodskii, A.G. Andreev, and M.V. Alekseenko, Hopping conduction in a batch of Ge:Ga samples with the degree of compensation K = 0.3: saturation effect, nearest neighbor hopping, and transition to variable-range hopping. Sov. Phys. Semicond. 26 (1992), pp. 244–252.
  • A.G. Zabrodskii and A.G. Andreev, Anomalously narrow Coulomb gap. JETP Lett. 58 (1993), pp. 756–761.
  • A.G. Zabrodskii and A.G. Andreev, The hopping conduction of neutron transmuted germanium. Int. J. Modern Phys. B 8 (1994), pp. 883–889. doi: 10.1142/S0217979294000427
  • W.N. Shafarman and T.G. Castner, Critical behavior of Mott variable-range hopping in Si:As near the metal-insulator transition. Phys. Rev. B 33 (1986), pp. 3570–3572. doi: 10.1103/PhysRevB.33.3570
  • R. Rentzsch, I.S. Shlimak and H. Berger, Hopping conductivity of undoped ZnSe thin films. Phys. Stat. Sol. A 54 (1979), pp. 487–492. doi: 10.1002/pssa.2210540207
  • I.N. Timchenko and D.D. Nedeoglo, Hopping conduction and energy spectrum of localized states in low-doped intermediate-compensated n-ZnSe. Phys. Stat. Sol. B 105 (1981), pp. 55–61. doi: 10.1002/pssb.2221050104
  • V.A. Kasiyan, D.D. Nedeoglo, A.V. Simashkevich and I.N. Timchenko, Conductivity and the metal-dielectric transition in compensated n-ZnSe. Phys. Stat. Sol. B 154 (1989), pp. 287–296. doi: 10.1002/pssb.2221540127
  • V.A. Kasiyan, D.D. Nedeoglo, A.V. Simashkevich and I.N. Timchenko, Metal–dielectric transition in n-ZnSe obtained by doping with shallow donor impurity. Phys. Stat. Sol. B 157 (1990), pp. 341–349. doi: 10.1002/pssb.2221570135
  • K.G. Lisunov, B. Raquet, H. Rakoto, J.M. Broto, E. Arushanov, X.Z. Xu, H. El Alami, and C.D. Cavellin, Variable-range hopping conductivity in thin film of the ladder compound [Ca1+δCu2O3]4. J. Appl. Phys. 94 (2003), pp. 5912–5917. doi: 10.1063/1.1603961
  • M. Rodriguez, C. Quiroga, I. Bonalde, E. Medina, S.M. Wasim, and G. Marin, Preexponential factor in variable-range hopping conduction in CuInTe2. Solid State Commun. 136 (2005), pp. 228–233. doi: 10.1016/j.ssc.2005.07.018
  • N.A. Poklonski, S.A. Vyrko, A.I. Kovalev and A.G. Zabrodskii, A quasi-classical model of the Hubbard gap in lightly compensated semiconductors. Semiconductors 50 (2016), pp. 299–308. doi: 10.1134/S1063782616030192
  • N.F. Mott and E.A. Davis, Conduction in non-crystalline systems II. The metal-insulator transition in a random array of centers. Phil. Mag. 17 (1968), pp. 1269–1284. doi: 10.1080/14786436808223201
  • H.E. Ruda, A theoretical analysis of electron transport in ZnSe. J. Appl. Phys. 59 (1986), pp. 1220–1231. doi: 10.1063/1.336509
  • T. Ohyama, K. Sakakibara, E. Otsuka, M. Isshiki and K. Igaki, Cyclotron-resonance studies of electronic properties in ZnSe. Phys. Rev. B 37 (1988), pp. 6153–6163. doi: 10.1103/PhysRevB.37.6153
  • O.V. Emel'yanenko, G.N. Ivanova, T.S. Lagunova, D.D. Nedeoglo, G.M. Shmelev and A.V. Simashkevich, Scattering mechanisms of electrons in ZnSe crystals with high mobility. Phys. Stat. Sol. B 96 (1979), pp. 823–833. doi: 10.1002/pssb.2220960239
  • S. Abboudy, Estimation of the effective dielectric response from hopping activation energy in the vicinity of insulator-metal transition in semiconductors. Int. J. Mod. Phys. B 10 (1996), pp. 59–65. doi: 10.1142/S0217979296000040
  • N.A. Poklonski, S.A. Vyrko and A.G. Zabrodskii, Electrostatic models of insulator-metal and metal-insulator concentration phase transitions in Ge and Si crystals doped by hydrogen-like impurities. Phys. Solid State 46 (2004), pp. 1101–1106. doi: 10.1134/1.1767252
  • V.A. Kasiyan, D.D. Nedeoglo, A.V. Simashkevich and I.N. Timchenko, Critical behaviour of n-ZnSe parameters in the vicinity of the metal-insulator transition. Phys. Stat. Sol. B 154 (1989), pp. 691–702.340. doi: 10.1002/pssb.2221540228
  • N. D. Nedeoglo, R. Laiho, A. V. Lashkul, E. Lähderanta and M. A. Shakhov, Influence of the magnetic field on the conductivity within the Coulomb gap of n-ZnSe single crystals doped with Ag. Semicond. Sci. Technol. 21 (2006), pp. 1335–1340. doi: 10.1088/0268-1242/21/9/020
  • L. Friedman and T. Holstein, Studies of polaron motion Part III: The Hall mobility of the small polaron. Ann. Phys. 21 (1963), pp. 494–549. doi: 10.1016/0003-4916(63)90130-1
  • P. Nagels, Experimental Hall effect data for a small-polaron semiconductor, in The Hall Effect and Its Applications, C.L. Chien, C.R. Westgate, eds., Plenum, New York, 1980. pp. 253–280.
  • H. Böttger and V.V. Bryksin, Hopping Conduction in Solids, Akademie-Verlag, Berlin, 1985.
  • T.G. Castner and W.N. Shafarman, Deconvolution of activated and variable-range-hopping conduction for barely insulating arsenic-doped silicon. Phys. Rev. B 60 (1999), pp. 14182–14196. doi: 10.1103/PhysRevB.60.14182
  • D.D. Nedeoglo, Formation and properties of the impurity band in n-ZnSe. Phys. Stat. Sol. B 80 (1977), pp. 369–377. doi: 10.1002/pssb.2220800143
  • M. Aven, High electron mobility in zinc selenide through low-temperature annealing. J. Appl. Phys. 42 (1971), pp. 1204–1208. doi: 10.1063/1.1660167
  • B. Pődör, On the concentration dependence of the thermal ionisation energy of impurities in InP. Semicond. Sci. Technol. 2 (1987), pp. 177–178. doi: 10.1088/0268-1242/2/3/008
  • Y. Kajikawa, Analysis of low-temperature data of Hall-effect measurements on p-type InP using a small-polaron theory. Phys. Stat. Sol. C 14 (2017), pp. 1600217.
  • G.N. Ivanova, D.D. Nedeoglo, A.V. Simashkevich and I.N. Timchenko, Negative magnetoresistance in zinc selenide. Phys. Stat. Sol. B 103 (1981), pp. 643–652. doi: 10.1002/pssb.2221030223
  • M. Vaziri, R. Reifenberger, R.L. Gunshor, L.A. Kolodziejski, S. Venkatesan and R.F. Pierret, Electrical and optical characterization of molecular-beam epitaxy grown Ga-doped ZnSe. J. Vac. Sc. Technol. B 7 (1989), pp. 253–258. doi: 10.1116/1.584728
  • H. van Houten, S. Colak, T. Marshall, and D.A. Cammack, Anomalous mobility and photo-Hall effect in ZnSe-GaAs heterostructures. J. Appl. Phys. 66 (1989), pp. 3047–3054. doi: 10.1063/1.344159
  • L.P. Ginzburg, Role of molecular pair in impurity transport. Sov. Phys. Semicond. 9 (1975), pp. 344–346.
  • S. Abboudy, A quasi-universal percolation approach of hopping activation energy and metal-nonmetal transition in semiconductors. Physica B 212 (1995), pp. 175–180. doi: 10.1016/0921-4526(95)00012-X
  • B.I. Shklovskii, Hopping conduction in lightly doped semiconductors (Review). Sov. Phys. Semicond. 6 (1973), pp. 1053–1075.
  • H.E. Gumlich, D. Theis and D. Tschierse, Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology-New Series, Group III, O. Madelung ed., Springer-Verlag, Berlin, 1982.
  • M.L. Malwah and R.W. Bene, Hall effect in the Hubbard model: Low-field regime. Phys. Rev. B 6 (1972), pp. 3305–3315. doi: 10.1103/PhysRevB.6.3305
  • I.P. Kogutyuk, V.M. Nitsoich and F.V. Skrypnik, A study of the concentration dependence of Hall and Verdet coefficients in the Hubbard model. Phys. Stat. Sol. B 99 (1980), pp. 183–187. doi: 10.1002/pssb.2220990117
  • B. Movaghar, B. Pohlmann, and D. Wurtz, The Hall-mobility in hopping conduction - AC conductivity and Hall-mobility. J. Phys. C: Solid State Phys. 16 (1983), pp. 3755–3762. doi: 10.1088/0022-3719/16/19/015
  • M. Rodríguez, I. Bonalde and E. Medina, Consistent hopping criterion in the Efros-Shklovskii regime. Phys. Rev. B 75 (2007), pp. 235205. doi: 10.1103/PhysRevB.75.235205
  • H. Fritzsche, Effect of uniaxial compression on impurity conduction in n-type germanium. Phys. Rev. 125 (1962), pp. 1552–1560. doi: 10.1103/PhysRev.125.1552

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.