251
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Multi-phase transformation kinetics of HSLA steels during continuous cooling: experiments and cellular automaton (CA) simulation

, , , ORCID Icon &
Pages 2001-2017 | Received 08 Dec 2019, Accepted 18 Mar 2020, Published online: 17 Apr 2020

References

  • S. Liu, X. Li, H. Guo, S. Yang, X. Wang, C. Shang and R.D.K. Misra, Selective role of bainitic lath boundary in influencing slip systems and consequent deformation mechanisms and delamination in high-strength low-alloy steel. Phil. Mag 98 (2018), pp. 934–958. doi: 10.1080/14786435.2018.1425008
  • S. Hong, K. Kang and C. Park, Strain-induced precipitation of NbC in Nb and Nb–Ti microalloyed HSLA steels. Scripta Mater 46 (2002), pp. 163–168. doi: 10.1016/S1359-6462(01)01214-3
  • Y. Shao, C. Liu, Z. Yan, H. Li and Y. Liu, Formation mechanism and control methods of acicular ferrite in HSLA steels: A review. J. Mater. Sci. Technol. 34 (2018), pp. 737–744. doi: 10.1016/j.jmst.2017.11.020
  • E. Valencia Morales, N.J. Galeano Alvarez, J. Vega Leiva, L.M. Castellanos, C.E. Villar and R.J. Hernandez, Kinetic theory of the overlapping phase transformations: case of the dilatometric method. Acta Mater. 52 (2004), pp. 1083–1088. doi: 10.1016/j.actamat.2003.10.041
  • Z. Yang, W. Xu, Z. Yang, C. Zhang and S. van der Zwaag, A 2D analysis of the competition between the equiaxed ferritic and the bainitic morphology based on a Gibbs energy Balance approach. Acta Mater. 105 (2016), pp. 317–327. doi: 10.1016/j.actamat.2015.12.040
  • E.V. Morales, J.A. Vega-Leiva, H.L.L. Salinas and I.S. Bott, Analysis of precipitation mechanisms in tempering of low-alloy steels using the kinetic theory of the overlapping transformations. Phase Transit. 84 (2011), pp. 179–191. doi: 10.1080/01411594.2010.530031
  • C. Liu, Y. Liu, D. Zhang, Z. Gao and Z. Yan, Bainite formation kinetics during isothermal Holding in Modified high Cr ferritic steel. Metall Mater Trans A 44 (2013), pp. 5447–5455. doi: 10.1007/s11661-013-1884-7
  • C. Liu, L. Shi, Y. Liu, C. Li, H. Li and Q. Guo, Acicular ferrite formation during isothermal holding in HSLA steel. J. Mater. Sci. 51 (2016), pp. 3555–3563. doi: 10.1007/s10853-015-9675-8
  • Y. Liu, C. Liu, F. Sommer and E.J. Mittemeijer, Martensite formation kinetics of substitutional Fe–0.7at.%Al alloy under uniaxial compressive stress. Acta Mater. 98 (2015), pp. 164–174. doi: 10.1016/j.actamat.2015.07.028
  • H.K. Yeddu, T. Lookman and A. Saxena, Strain-induced martensitic transformation in stainless steels: a three-dimensional phase-field study. Acta Mater. 61 (2013), pp. 6972–6982. doi: 10.1016/j.actamat.2013.08.011
  • Y.C. Liu, F. Sommer and E.J. Mittemeijer, The austenite–ferrite transformation of ultralow-carbon Fe–C alloy; transition from diffusion- to interface-controlled growth. Acta Mater. 54 (2006), pp. 3383–3393. doi: 10.1016/j.actamat.2006.03.029
  • F. Liu, F. Sommer, C. Bos and E.J. Mittemeijer, Analysis of solid state phase transformation kinetics: models and recipes. Int. Mater. Rev. 52 (2007), pp. 193–212. doi: 10.1179/174328007X160308
  • Y. Liu, L. Zhang, F. Sommer and E.J. Mittemeijer, Kinetics of martensite formation in Substitutional Fe-Al alloys: Dilatometric analysis. Metallurgical and Materials Transactions A 44 (2012), pp. 1430–1440. doi: 10.1007/s11661-012-1497-6
  • S.J. Jones and H.K.D.H. Bhadeshia, Kinetics of the simultaneous decomposition of austenite into several transformation products. Acta Mater. 45 (1997), pp. 2911–2920. doi: 10.1016/S1359-6454(96)00392-8
  • P.R. Rios and E. Villa, Simultaneous and sequential transformations. Acta Mater. 59 (2011), pp. 1632–1643. doi: 10.1016/j.actamat.2010.11.030
  • Y. Liu, D. Wang, F. Sommer and E.J. Mittemeijer, Isothermal austenite–ferrite transformation of Fe–0.04 at.% C alloy: Dilatometric measurement and kinetic analysis. Acta Mater. 56 (2008), pp. 3833–3842. doi: 10.1016/j.actamat.2008.04.015
  • A.L.M. Alves, W.L.S. Assis and P.R. Rios, Computer simulation of sequential transformations. Acta Mater. 126 (2017), pp. 451–468. doi: 10.1016/j.actamat.2016.12.068
  • C. Zheng and D. Raabe, Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: a cellular automaton model. Acta Mater. 61 (2013), pp. 5504–5517. doi: 10.1016/j.actamat.2013.05.040
  • D.H. Sherman, B.J. Yang, A.V. Catalina, A.A. Hattiangadi, P. Zhao, L. Chuzhoy and M.L. Johnson, Modeling of microstructure evolution of Athermal transformation of Lath martensite. Mater. Sci. Forum 539-543 (2007), pp. 4795–4800. doi: 10.4028/www.scientific.net/MSF.539-543.4795
  • C. Zheng, N. Xiao, L. Hao, D. Li and Y. Li, Numerical simulation of dynamic strain-induced austenite–ferrite transformation in a low carbon steel. Acta Mater. 57 (2009), pp. 2956–2968. doi: 10.1016/j.actamat.2009.03.005
  • C. Zheng, D. Raabe and D. Li, Prediction of post-dynamic austenite-to-ferrite transformation and reverse transformation in a low-carbon steel by cellular automaton modeling. Acta Mater. 60 (2012), pp. 4768–4779. doi: 10.1016/j.actamat.2012.06.007
  • D. An, S. Chen, D. Sun, S. Pan, B.W. Krakauer and M. Zhu, A cellular automaton model integrated with CALPHAD-based thermodynamic calculations for ferrite-austenite phase transformations in multicomponent alloys. Comput. Mater. Sci. 166 (2019), pp. 210–220. doi: 10.1016/j.commatsci.2019.05.005
  • K.B. Blagoev and L.T. Wille, Dynamical phase transitions in one-dimensional stochastic cellular automata. Phil. Mag 84 (2006), pp. 835–841. doi: 10.1080/1478643031000119192
  • Y. Liu, F. Sommer and E. Mittemeijer, Austenite–ferrite transformation kinetics under uniaxial compressive stress in Fe–2.96 at.% Ni alloy. Acta Mater. 57 (2009), pp. 2858–2868. doi: 10.1016/j.actamat.2009.02.044
  • C. Garcia-Mateo and H.K.D.H. Bhadeshia, Nucleation theory for high-carbon bainite. Mat. Sci. Eng. A 378 (2004), pp. 289–292. doi: 10.1016/j.msea.2003.10.355
  • J. Sietsma and S.M.C. Van Bohemen, Modeling of isothermal bainite formation based on the nucleation kinetics. Int. J. Mater. Res. 99 (2008), pp. 739–747. doi: 10.3139/146.101695
  • J. Min, J. Lin, Y.a. Min and F. Li, On the ferrite and bainite transformation in isothermally deformed 22MnB5 steels. Mater Sci Eng: A 550 (2012), pp. 375–387. doi: 10.1016/j.msea.2012.04.091
  • H. Matsuda and H.K. Bhadeshia, Kinetics of the bainite transformation. P Roy Soc London. Series A: Math, Phy 460 (2004), pp. 1707–1722. doi: 10.1098/rspa.2003.1225
  • D. Quidort and Y.J. Brechet, A model of isothermal and non isothermal transformation kinetics of bainite in 0.5% C steels. ISIJ Int. 42 (2002), pp. 1010–1017. doi: 10.2355/isijinternational.42.1010
  • E.J. Mittemeijer and F. Sommer, Solid state phase transformation kinetics: a modular transformation model. Zeitschrift für Metallkunde 93 (2002), pp. 352–361. doi: 10.3139/146.020352
  • A. Kempen, F. Sommer and E. Mittemeijer, Determination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth. J. Mater. Sci. 37 (2002), pp. 1321–1332. doi: 10.1023/A:1014556109351
  • N.Y. Zolotorevsky, S.N. Panpurin, A.A. Zisman and S.N. Petrov, Effect of ausforming and cooling condition on the orientation relationship in martensite and bainite of low carbon steels. Mater. Charact. 107 (2015), pp. 278–282. doi: 10.1016/j.matchar.2015.07.023
  • J.W. Christian, The Theory of Transformations in Metals and Alloys, Pergamon Press , Oxford, 2002.
  • T. Jia and M. Militzer, The effect of solute Nb on the austenite-to-ferrite transformation. Metall Mater Trans A 46 (2015), pp. 614–621. doi: 10.1007/s11661-014-2659-5
  • Y.B. Guo, G.F. Sui, Y.C. Liu, Y. Chen and D.T. Zhang, Phase transformation mechanism of low-carbon high strength low alloy steel upon continuous cooling. Mater. Res. Innovations 19 (2015), pp. S8-416–S418-422. doi: 10.1179/1432891715Z.0000000001712
  • Y. Liu, L. Shi, C. Liu, L. Yu, Z. Yan and H. Li, Effect of step quenching on microstructures and mechanical properties of HSLA steel. Mat. Sci. Eng. A 675 (2016), pp. 371–378. doi: 10.1016/j.msea.2016.08.087
  • X. Li, L. Shi, Y. Liu, K. Gan and C. Liu, Achieving a desirable combination of mechanical properties in HSLA steel through step quenching. Mat. Sci. Eng. A 772 (2020), pp. 138683. doi: 10.1016/j.msea.2019.138683
  • M. Militzer, R. Pandi and E.B. Hawbolt, Ferrite nucleation and growth during continuous cooling. Metallurgical and Materials Transactions A 27 (1996), pp. 1547–1556. doi: 10.1007/BF02649814
  • L. Zhang, C.B. Zhang, Y.M. Wang, S.Q. Wang and H.Q. Ye, A cellular automaton investigation of the transformation from austenite to ferrite during continuous cooling. Acta Mater. 51 (2003), pp. 5519–5527. doi: 10.1016/S1359-6454(03)00416-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.