170
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Vibrating reed magnetometer studies of superconducting and magnetic materials

ORCID Icon, ORCID Icon &
Pages 1367-1413 | Received 11 Oct 2019, Accepted 01 Apr 2020, Published online: 23 Apr 2020

References

  • W.A. Aiello, C.R. Wolfe and W.A. Little, Simplified vibrating-reed technique for the measurement of the temperature dependence of Young’s modulus of small samples. Rev. Sci. Instrum 54 (1983), pp. 594–596. doi: 10.1063/1.1137418
  • M. Barmatz, H.J. Leamy and H.S. Chen, A method for the determination of Young's modulus and internal friction in metallic glasses. Rev. Sci. Instrum 42 (1971), pp. 885–886. doi: 10.1063/1.1685255
  • H.S. Sack, J. Motz, H.L. Raub and R.N. Work, Elastic losses in some high polymers as a function of frequency and temperature. J. Appl. Phys 18 (1947), pp. 450–456. doi: 10.1063/1.1697675
  • M. Barmatz, L.R. Testardi and F.J. Di Salvo, Elasticity measurements in the layered dichalcogenides TaSe2 and NbSe2. Phys. Rev. B 12 (1975), pp. 4367–4376. doi: 10.1103/PhysRevB.12.4367
  • T. Tiedje, R.R. Haering and W.N. Hardy, The application of capacitive transducers to sound velocity measurements in TTF-TCNQ. J. Acous. Soc. Am 65 (1979), pp. 1171–1181. doi: 10.1121/1.382772
  • J.W. Brill, Elastic anomalies at the charge density wave transition in TaS3. Solid State Commun. 41 (1982), pp. 925–929. doi: 10.1016/0038-1098(82)91237-6
  • X.D. Xiang and J.W. Brill, Frequency dependence of elastic anomalies in charge-density-wave conductors. Phys. Rev. Lett 63 (1989), pp. 1853–1856. doi: 10.1103/PhysRevLett.63.1853
  • E.H. Brandt, Theory of the vibrating ferromagnetic reed. J. Appl. Phys 59 (1986), pp. 3224–3230. doi: 10.1063/1.336903
  • R.L. Jacobsen and A.C. Ehrlich, Vibrating-reed dynamics in a magnetic field. Phys. Rev. Lett 73 (1994), pp. 348–351. doi: 10.1103/PhysRevLett.73.348
  • E. Gaganidze, P. Esquinazi and M. Ziese, Dynamical response of vibrating ferromagnets. J. Magn. Magn. Mater 210 (2000), pp. 49–62. doi: 10.1016/S0304-8853(99)00613-7
  • E. Gaganidze, P. Esquinazi and M. Ziese, Vibrating ferromagnets in a magnetic field. J. Alloy. Compd 310 (2000), pp. 144–152. doi: 10.1016/S0925-8388(00)00936-1
  • P. Esquinazi, Vibrating superconductors. J. Low Temp. Phys. 85 (1991), pp. 139–232. doi: 10.1007/BF00681969
  • E.H. Brandt, P. Esquinazi and H. Neckel, A superconducting vibrating reed applied to flux-line pinning. I. theory. J. Low Temp. Phys 63 (1986), pp. 187–214. doi: 10.1007/BF00683764
  • P. Esquinazi, H. Neckel, G. Weiss and E.H. Brandt, A superconducting vibrating reed applied to flux-line pinning. II. Experiment. J. Low Temp. Phys 64 (1986), pp. 1–20. doi: 10.1007/BF00681538
  • P. Esquinazi and E.H. Brandt, Flux-line pinning in a superconducting vibrating reed. Jpn. J. Appl. Phys 26 (1987), pp. 1513. doi: 10.7567/JJAPS.26S3.1513
  • H. Drulis, Z.G. Xu, J.W. Brill, L.E. De Long and J. Hou, Observation of an extended region of magnetic reversibility in Nb and NbSe2. Phys. Rev. B 44 (1991), pp. 4731–4734. doi: 10.1103/PhysRevB.44.4731
  • E.H. Brandt, The flux line lattice in high Tc superconductors. J. Alloy. Compd 181 (1992), pp. 339–356. doi: 10.1016/0925-8388(92)90331-3
  • U.G.L. Lahaise, Q. Chen, L.E. De Long, C.P. Brock, H.H. Wang, K.D. Carlson, J.A. Schlueter and J.M. Williams, Anomalous vortex dynamics in κ-(ET)2Cu[N(CN)2]Br: evidence for field-induced magnetic order and unconventional superconductivity. Phys. Rev. B 51 (1995), pp. 3301–3304. doi: 10.1103/PhysRevB.51.3301
  • L.E. De Long, J. Childers, A. Olinger, Q. Chen, J.C. Hou, U.G.L. Lahaise, J. Zhang, D.G. Hinks, P.C. Canfield, R. Schweinfurth, D. Van Harlingen and M.L. Norton, High-sensitivity vibrating reed studies of superconductors. Phys. B 223-224 (1996), pp. 22–27. doi: 10.1016/0921-4526(96)00029-4
  • J. Zhang, L.E. De Long, V. Majidi and R.C. Budhani, Nonlinear dynamics of magnetic vortices in single-crystal and ion-damaged NbSe₂. Phys. Rev. B 53 (1996), pp. R8851–R8854. doi: 10.1103/PhysRevB.53.R8851
  • X.D. Xiang, J.W. Brill and W.L. Fuqua, Use of a helical resonator as a capacitive transducer in vibrating reed measurements. Rev. Sci. Instrum 60 (1989), pp. 3035–3040. doi: 10.1063/1.1140600
  • A.O. Rankine, A simple method of demonstrating the paramagnetism and diamagnetism of substances in magnetic fields of low intensity. Proc. Phys. Soc 46 (1934), pp. 391–407. doi: 10.1088/0959-5309/46/3/312
  • Y.L. Yousef, H. Mikhail and R.K. Girgis, Proposed dynamic method for magnetic measurements in small fields. Rev. Sci. Instrum 22 (1951), pp. 342–343. doi: 10.1063/1.1745928
  • H. Zijlstra, A vibrating reed magnetometer for microscopic particles. Rev. Sci. Instrum 41 (1970), pp. 1241–1243. doi: 10.1063/1.1684777
  • W. Roos, K.A. Hempel, C. Voigt, H. Dederichs and R. Schippan, High sensitivity vibrating reed magnetometer. Rev. Sci. Instrum 51 (1980), pp. 612–613. doi: 10.1063/1.1136264
  • H.J. Richter, K.A. Hempel and J. Pfeiffer, Improvement of sensitivity of the vibrating reed magnetometer. Rev. Sci. Instrum 59 (1988), pp. 1388–1393. doi: 10.1063/1.1139674
  • J.R. Fisk, Helical-resonator design techniques. QST-ARRL June (1976), pp. 11–14.
  • B.H. Heise, Axial torque in trained superconducting wires in a transverse magnetic field. Rev. Mod. Phys 36 (1964), pp. 64–66. doi: 10.1103/RevModPhys.36.64
  • I.V. Zolotukhin, V.E. Miloshenko and V.S. Postnikov, Influence of the superconducting transition on the internal friction of Tantalum and Niobium. Sov. Phys. Solid State 13 (1971), pp. 1048–1049.
  • V.S. Postnikov, I.V. Zolotukhin and V.E. Miloshenko, Internal friction and relative value of Youngs modulus of Niobium in normal and superconducting states. Sov. Phys. Solid State 14 (1972), pp. 809–810.
  • I.V. Zolotukhin, et al., Sov. J. low. Temp Phys 6 (1980), pp. 110.
  • A. Karelina, H.F. Braun, M. Endres and D. Rainer, The two-dimensional vibrating reed: A study of anisotropic pinning in high-temperature superconductors. J. Low Temp. Phys 146 (2007), pp. 681–695. doi: 10.1007/s10909-006-9288-3
  • E.H. Brandt, P. Esquinazi, H. Neckel and G. Weiss, Drastic increases of frequency and damping of a superconducting vibrating reed in a longitudinal magnetic field. Phys. Rev. Lett 56 (1986), pp. 89–92. doi: 10.1103/PhysRevLett.56.89
  • P. Esquinazi, C. Duran and E.H. Brandt, Vibrating reed magnetometry - An application for ceramic superconductors. J. Appl. Phys 65 (1989), pp. 4936–4942. doi: 10.1063/1.343210
  • J. Kober, A. Gupta, P. Esquinazi, H.F. Braun and E.H. Brandt, Vibrating-reed experiments on superconducting suspensions. Phys. Rev. Lett 66 (1991), pp. 2507–2510. doi: 10.1103/PhysRevLett.66.2507
  • A. Gupta, Y. Kopelevich, P. Esquinazi, F.I. Schulz and H.F. Braun, Vibrating reed studies of vortex pinning in high-temperature superconductors. J. Alloy. Compd 195 (1993), pp. 419–426. doi: 10.1016/0925-8388(93)90769-J
  • Y. Kopelevich, A. Gupta and P. Esquinazi, Anomalous behavior of the flux line lattice of vibrating high-Tc superconductors at 30 K in magnetic fields parallel to the CuO2 planes. Phys. Rev. Lett 70 (1993), pp. 666–669. doi: 10.1103/PhysRevLett.70.666
  • P. Esquinazi, Tunneling Systems in Amorphous and Crystalline Solids, Springer-Verlag, Berlin, 1998.
  • A.V. Pan, M. Ziese, R. Höhne, P. Esquinazi, S. Knappe and H. Koch, Surface superconductivity and matching effect in a niobium thin film. Phys. C 301 (1998), pp. 72–84. doi: 10.1016/S0921-4534(98)00110-5
  • A.V. Pan and P. Esquinazi, Influence of a driving force on the pinning of field -cooled vortex lattice. Phys. C 341-348 (2000), pp. 1187–1188. doi: 10.1016/S0921-4534(00)00852-2
  • M. Ziese, P. Esquinazi, A. Gupta and H.F. Braun, Disorder-induced transition of the vortex lattice in YBa2Cu3O7 crystals and films. Phys. Rev. B 50 (1994), pp. 9491–9498. doi: 10.1103/PhysRevB.50.9491
  • E.H. Brandt, Thin superconductors in a perpendicular magnetic ac field: general formulation and strip geometry. Phys. Rev. B 49 (1994), pp. 9024–9040. doi: 10.1103/PhysRevB.49.9024
  • L.E. De Long, Z.G. Xu, J.C. Hou and J.W. Brill, Vibrating reed studies of flux line dynamics in superconductors, in High Temperature Superconductivity, S.K. Malik, S.S. Shah, eds., Nova Science Publisher, Commack, New York, 1992. pp. 383–407.
  • L.E. De Long, S.A. Kryukov, A.G. Joshi, W. Xu, A. Bosomtwi, B.J. Kirby and M.R. Fitzsimmons, Extreme magnetic anisotropy and multiple superconducting transition signatures in a [Nb(23 nm)/Ni(5 nm)]5 multilayer. Phys. C 468 (2008), pp. 523–530. doi: 10.1016/j.physc.2007.11.073
  • P.G. De Gennes, Superconductivity of Metals and Alloys, W.A. Benjamin, New York, 1966.
  • M. Tinkham, Resistive transition of high-temperature superconductors. Phys. Rev. Lett 61 (1988), pp. 1658–1661. doi: 10.1103/PhysRevLett.61.1658
  • B.S. Berry and W.C. Pritchet, Influence of the magnetomechanical pole-effect on the behavior of thin vibrating reeds. J. Appl. Phys 50 (1979), pp. 1630–1632. doi: 10.1063/1.327272
  • A. Wenger and E. Török, Theory of the magnetomechanical pole effect. J. Magn. Magn. Mater 13 (1979), pp. 283–288. doi: 10.1016/0304-8853(79)90210-5
  • R.L. Jacobsen, A.C. Ehrlich, T.M. Tritt and D.J. Gillespie, Effect of a magnetic field on a vibrating reed with anisotropic susceptibility. Phys. Rev. B 50 (1994), pp. 9208–9214. doi: 10.1103/PhysRevB.50.9208
  • Quantum Design, https://www.qdusa.com/pharosindex/.
  • S.K. Sinha, E.B. Sirota, S. Garoff and H.B. Stanley, X-ray and neutron scattering from rough surfaces. Phys. Rev. B 38 (1988), pp. 2297–2311. doi: 10.1103/PhysRevB.38.2297
  • J.J. Turner, X. Huang, O. Krupin, K.A. Seu, D. Parks, S. Kevan, E. Lima, K. Kisslinger, I. McNulty, R. Gambino, S. Mangin, S. Roy, and P. Fischer, X-Ray diffraction microscopy of magnetic structures. Phys. Rev. Lett 107 (2011), p. 033904. doi: 10.1103/PhysRevLett.107.033904
  • S. Roy, D. Parks, K.A. Seu, R. Su, J.J. Turner, W. Chao, E.H. Anderson, S. Cabrini and S.D. Kevan, Lensless X-ray imaging in reflection geometry. Nat. Photonics 5 (2011), pp. 243–245. doi: 10.1038/nphoton.2011.11
  • J.B. Kortright, S.G. Kim, G.P. Denbeaux, G. Zeltzer, K. Takano and E.E. Fullerton, Soft-x-ray small-angle scattering as a sensitive probe of magnetic and charge heterogeneity. Phys. Rev. B 64 (2001), pp. 092401. doi: 10.1103/PhysRevB.64.092401
  • M.R. Fitzsimmons, S.D. Bader, J.A. Borchers, G.P. Felcher, J.K. Furdyna, A. Hoffmann, J.B. Kortright, I.K. Schuller, T.C. Schulthess, S.K. Sinha, M.F. Toney, D. Weller and S. Wolf, Neutron scattering studies of nanomagnetism and artificially structured materials. J. Magn. Magn. Mater 271 (2004), pp. 103–146. doi: 10.1016/j.jmmm.2003.09.046
  • L.E. De Long, S.A. Kryukov, A. Bosomtwi, W. Xu, E.M. Gonzalez, E. Navarro, J.E. Villegas, J.L. Vicent, C. Yu and M.J. Pechan, Superconductivity as a probe of magnetic switching and ferromagnetic stability in Nb/Ni multilayers. Philos. Mag 86 (2006), pp. 2735–2760. doi: 10.1080/14786430500422308
  • L.E. De Long, V.V. Metlushko, S. Kryukov, M. Yun, S. Lokhre, V.V. Moshchalkov and Y. Bruynseraede, Whatever happened to Mott? Phys. C 369 (2002), pp. 118–124. doi: 10.1016/S0921-4534(01)01230-8
  • L.E. De Long, S. Kryukov, V.V. Metlushko, V.V. Moshchalkov and Y. Bruynseraede, Patterned bilayer films as a new class of superconducting wire networks. Phys. C 404 (2004), pp. 123–127. doi: 10.1016/j.physc.2003.11.051
  • V.V. Metlushko, L.E. De Long, V.V. Moshchalkov and Y. Bruynseraede, Proximity effect in the superconducting magnetization of a Pb/Cu bilayer film with an antidot lattice. Phys. C 391 (2003), pp. 196–202. doi: 10.1016/S0921-4534(03)00897-9
  • V.V. Metlushko, L.E. De Long, M. Baert, E. Rosseel, M.J. Van Bael, K. Temst, V.V. Moshchalkov and Y. Bruynseraede, Supermatching vortex phases in superconducting thin films with antidot lattices. Europhys. Lett 41 (1998), pp. 333–338. doi: 10.1209/epl/i1998-00152-9
  • P. Stamenov and J.M.D. Coey, Sample size, position, and structure effects on magnetization measurements using second-order gradiometer pickup coils. Rev. Sci. Instrum 77 (2006), pp. 015106. doi: 10.1063/1.2149190
  • G. Blatter, Vortices in high-temperature superconductors. Rev. Mod. Phys 66 (1994), pp. 1125–1388. doi: 10.1103/RevModPhys.66.1125
  • Z.G. Xu and J.W. Brill, Relaxation and elastic anomalies in charge-density-wave conductors. Phys. Rev. B 45 (1992), pp. 3953–3961. doi: 10.1103/PhysRevB.45.3953
  • Z.G. Xu, L.E. De Long, J.W. Brill, J.C. Hou, H. Drulis, Y. Zheng, D.G. Hinks, M.L. Norton, H.Y. Tang and C.P. Brock, Vibrating reed study of the flux line dissipation of ceramic and single-crystal (Ba, K)BiO3. J. Supercond. 7 (1994), pp. 835–839. doi: 10.1007/BF01320879
  • J.M. Tranquada, Spins, stripes, and superconductivity in hole-doped cuprates. AIP Conf. Proc 1550 (2013), pp. 114–187. doi: 10.1063/1.4818402
  • P. Moliniè, D. Jérome and A.J. Grant, Pressure-enhanced superconductivity and superlattice structures in transition metal dichalcogenide layer crystals. Philos. Mag 30 (1974), pp. 1091–1103. doi: 10.1080/14786437408207261
  • T.F. Smith, L.E. De Long, A.R. Moodenbaugh, T.H. Geballe, and R.E. Schwall, Superconductivity of NbSe₂ to 140 kbar. J. Phys. C 5 (1972), pp. L230–L232. doi: 10.1088/0022-3719/5/16/008
  • M. Chung, Y.K. Kuo, Z.G. Xu, L.E. De Long, J.W. Brill and R.C. Budhani, Effects of transport current and columnar defects on the rf penetration depth of NbSe2. Phys. Rev. B 50 (1994), pp. 1329–1332. doi: 10.1103/PhysRevB.50.1329
  • S. Bhattacharya and M.J. Higgins, Dynamics of a disordered flux line lattice. Phys. Rev. Lett 70 (1993), pp. 2617–2620. doi: 10.1103/PhysRevLett.70.2617
  • Z.G. Xu, H. Drulis, J. Hou, L.E. De Long and J.W. Brill, Double-peak in the dissipation of NbSe2 vibrating reeds. Phys. C 202 (1992), pp. 256–262. doi: 10.1016/0921-4534(92)90168-C
  • G. D'Anna, M.O. André, W. Benoit, E. Rodríguez, D.S. Rodríguez, J. Luzuriaga, and J.V. Wasczak, Flux-line response in 2H-NbSe2 investigated by means of the vibrating superconductor method. Phys. C 218 (1993), pp. 238–244. doi: 10.1016/0921-4534(93)90288-2
  • X. Ling and J.I. Budnick, Magnetic Susceptibility of Superconductors and Other Spin Systems, Plenum Press, New York, 1991.
  • P. Koorevaar, J. Aarts, P. Berghuis and P.H. Kes, Tilt-modulus enhancement of the vortex lattice in the layered superconductor 2H-NbSe2. Phys. Rev. B 42 (1990), pp. 1004–1007. doi: 10.1103/PhysRevB.42.1004
  • W. Jiang, N.C. Yeh, D.S. Reed, U. Kriplani and F. Holtzberg, Possible origin of anisotropic resistive hysteresis in the vortex state of untwinned YBa2Cu3O7 single crystals. Phys. Rev. Lett 74 (1995), pp. 1438–1441. doi: 10.1103/PhysRevLett.74.1438
  • D.E. Farrell, W.K. Kwok, U. Welp, J.A. Fendrich and G.W. Crabtree, Order of the fundamental vortex transformation in YBa2Cu3O7-δ. Phys. Rev. B 51 (1995), pp. 9148–9154. doi: 10.1103/PhysRevB.51.9148
  • W.K. Kwok, J.A. Fendrich, C.J. van der Beck and G.W. Crabtree, Peak effect as precursor to vortex lattice melting in single-crystal YBa2Cu3O7-δ. Phys. Rev. Lett 73 (1994), pp. 2614–2617. doi: 10.1103/PhysRevLett.73.2614
  • J.B. Marion and S.T. Thornton, Classical Dynamics of Particles and Systems. 4th ed. Sanders College Publishing, Fort Worth, 1995.
  • A.M. Campbell, The interaction distance between flux lines and pinning centres. J. Phys. C 4 (1971), pp. 3186–3198. doi: 10.1088/0022-3719/4/18/023
  • M.T. Sprackling, The Plastic Deformation of Simple Ionic Crystals, Academic Press, London, New York, 1976.
  • U. Yaron, P.L. Gammel, D.A. Huse, R.N. Kleiman, C.S. Oglesby, E. Bucher, B. Batlogg, D.J. Bishop, K. Mortensen and K.N. Clausen, Structural evidence for a two-step process in the depinning of the superconducting flux-line lattice. Nature 376 (1995), pp. 753–755. doi: 10.1038/376753a0
  • H. Eisaki, H. Takagi, R.J. Cava, B. Batlogg, J.J. Krajewski, W.F. Peck, K. Mizuhashi, J.O. Lee and S. Uchida, Competition between magnetism and superconductivity in rare-earth nickel boride carbides. Phys. Rev. B 50 (1994), pp. 647–650. doi: 10.1103/PhysRevB.50.647
  • A.I. Goldman, C. Stassis, P.C. Canfield, J. Zarestky, P. Dervenagas, B.K. Cho, D.C. Johnston and B. Sternlieb, Magnetic pair breaking in HoNi2B2C. Phys. Rev. B 50 (1994), pp. 9668–9671. doi: 10.1103/PhysRevB.50.9668
  • P.C. Canfield, B.K. Cho, D.C. Johnston, D.K. Finnemore and M.F. Hundley, Specific heat and anisotropic superconducting and normal-state magnetization of HoNi2B2C. Phys. C 230 (1994), pp. 397–406. doi: 10.1016/0921-4534(94)90857-5
  • M.B. Maple and P. Fischer, Superconductivity in ternary compounds II, Vol. 34, in Springer Topics in Current Physics, Springer, Berlin, 1982.
  • D.E. Farrell, Private Communication.
  • L.P. Le, R.H. Heffner, G.J. Nieuwenhuys, P.C. Canfield, B.K. Cho, A. Amato, R. Feyerherm, F.N. Gygax, D.E. Maclaughlin, and A. Schenck, μ+SR studies of magnetic properties of boron carbide superconductors. Phys. B 206–207 (1995), pp. 552–554. doi: 10.1016/0921-4526(94)00516-X
  • T.E. Grigereit, J.W. Lynn, Q. Huang, A. Santoro, R.J. Cava, J.J. Krajewski and W.F. Peck, Observation of oscillatory magnetic order in the antiferromagnetic superconductor HoNi2B2C. Phys. Rev. Lett 73 (1994), pp. 2756–2759. doi: 10.1103/PhysRevLett.73.2756
  • Q. Huang, A. Santoro, T.E. Grigereit, J.W. Lynn, R.J. Cava, J.J. Krajewski and W.F. Peck, Neutron-powder-diffraction study of the nuclear and magnetic structures of the antiferromagnetic superconductor HoNi2B2C. Phys. Rev. B 51 (1995), pp. 3701–3708. doi: 10.1103/PhysRevB.51.3701
  • S.A. Kryukov, L.E. De Long, J.E. Villegas, E.M. González, and J.L. Vicent, Magnetic switching of Nb-Ni multilayers near the superconducting critical temperature. IEEE Trans. magn. 39 (2003), pp. 2693–2695. doi: 10.1109/TMAG.2003.815563
  • B.Y. Jin and J.B. Ketterson, Artificial metallic superlattices. Adv. Phys. 38 (1989), pp. 189–366. doi: 10.1080/00018738900101112
  • C.L. Chien and D.H. Reich, Proximity effects in superconducting/magnetic multilayers. J. Magn. Magn. Mater 200 (1999), pp. 83–94. doi: 10.1016/S0304-8853(99)00318-2
  • Y.A. Izyumov, Y.N. Proshin and M.G. Khusainov, Competition between superconductivity and magnetism in ferromagnet/superconductor heterostructures. Phys.-Uspekhi 45 (2002), pp. 109–148. doi: 10.1070/PU2002v045n02ABEH001025
  • A.I. Buzdin, Superconductivity and magnetism. C. R. Phys. 7(1) (2006), pp. 1–150. doi: 10.1016/j.crhy.2006.01.002
  • Z. Radovic, A.I. Buzdin and J.R. Clem, Transition temperatures of superconductor-ferromagnet superlattices. Phys. Rev. B 44 (1991), pp. 759–764. doi: 10.1103/PhysRevB.44.759
  • J.A. Glick, V. Aguilar, A.B. Gougam, B.M. Niedzielski, E.C. Gingrich, R. Loloee, W.P. Pratt, and N.O. Birge, Phase control in a spin-triplet SQUID. Sci. Adv. 4 (2018), p. eaat9457. doi: 10.1126/sciadv.aat9457
  • M. Eschrig, Spin-polarized supercurrents for spintronics: a review of current progress. Rep. Prog. Phys 78 (2015), pp. 104501. doi: 10.1088/0034-4885/78/10/104501
  • F.S. Bergeret, A.F. Volkov and K.B. Efetov, Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures. Rev. Mod. Phys 77 (2005), pp. 1321–1373. doi: 10.1103/RevModPhys.77.1321
  • E. Navarro, J.E. Villegas and J.L. Vicent, Superconducting and structural properties of Nb/Ni multilayers. J. Magn. Magn. Mater 240 (2002), pp. 586–588. doi: 10.1016/S0304-8853(01)00853-8
  • S.A. Kryukov, A. Bosomtwi, L.E. De Long, E.M. Gonzalez, E. Navarro, J.L. Vicent, J.E. Villegas and W. Xu, Matching effects in the field and temperature dependences of the magnetization of superconducting/ferromagnetic Nb/Ni multilayers. J. Phys. Chem. Solids 67 (2006), pp. 610–612. doi: 10.1016/j.jpcs.2005.10.081
  • L.D. Cooley and A.M. Grishin, Pinch effect in commensurate vortex-pin lattices. Phys. Rev. Lett 74 (1995), pp. 2788–2791. doi: 10.1103/PhysRevLett.74.2788
  • S.A. Kryukov, L.E. De Long, E. Navarro, J.E. Villegas, E.M. Gonzalez and J.L. Vicent, Magnetic switching of Nb-Ni multilayers near the superconducting critical temperature. IEEE Trans. Magn 39 (2003), pp. 2693–2695. doi: 10.1109/TMAG.2003.815563
  • A.I. Buzdin, Proximity effects in superconductor-ferromagnet heterostructures. Rev. Mod. Phys 77 (2005), pp. 935–976. doi: 10.1103/RevModPhys.77.935
  • M.B. Maple, Paramagnetic Impurities in Superconductors, Vol. V Chapt. 10, Magnetism, Academic Press, New York, 1973.
  • I.C. Moraru, W.P. Pratt and N.O. Birge, Magnetization-dependent Tc shift in ferromagnet/superconductor/ferromagnet trilayers with a strong ferromagnet. Phys. Rev. Lett 96 (2006), pp. 037004. doi: 10.1103/PhysRevLett.96.037004
  • L.R. Tagirov, Low-field superconducting spin switch based on a superconductor/ferromagnet multilayer. Phys. Rev. Lett 83 (1999), pp. 2058–2061. doi: 10.1103/PhysRevLett.83.2058
  • V.V. Moshchalkov, M. Baert, V.V. Metlushko, E. Rosseel, M.J. Van Bael and K. Temst, Magnetization of multiple-quanta vortex lattices. Phys. Rev. B 54 (1996), pp. 7385–7393. doi: 10.1103/PhysRevB.54.7385
  • V.V. Moshchalkov, M. Baert, V.V. Metlushko, E. Rosseel, M.J. Van Bael, K. Temst, Y. Bruynseraede and R. Jonckheere, Pinning by an antidot lattice: The problem of the optimum antidot size. Phys. Rev. B 57 (1998), pp. 3615–3622. doi: 10.1103/PhysRevB.57.3615
  • A.I. Buzdin and A.Y. Simonov, Magnetization of anisotropic superconductors in the tilted magnetic field. Phys. C 175 (1991), pp. 143–155. doi: 10.1016/0921-4534(91)90245-T
  • S.W. Han, J. Farmer, P.F. Miceli, G. Felcher, R. Goyette, G.T. Kiehne and J.B. Ketterson, Distribution of vortices in Nb/Al multilayers studied by spin-polarized neutron reflectivity and magnetization. Phys. B 336 (2003), pp. 162–172. doi: 10.1016/S0921-4526(03)00286-2
  • L.S. Levitov, Phyllotaxis of flux lattices in layered superconductors. Phys. Rev. Lett 66 (1991), pp. 224–227. doi: 10.1103/PhysRevLett.66.224
  • C.C. de Souza Silva, L.R.E. Cabral and A.J. Albino, Vortex configurations and metastability in mesoscopic superconductors. Phys. C 404 (2004), pp. 11–17. doi: 10.1016/j.physc.2003.11.060
  • M.J. Van Bael, S. Raedts, K. Temst, J. Swerts, V.V. Moshchalkov and Y. Bruynseraede, Magnetic domains and flux pinning properties of a nanostructured ferromagnet/superconductor bilayer. J. Appl. Phys 92 (2002), pp. 4531–4537. doi: 10.1063/1.1502185
  • C. Visani, P.J. Metaxas, A. Collaudin, B. Calvet, R. Bernard, J. Briatico, C. Deranlot, K. Bouzehouane, and J.E. Villegas, Hysteretic magnetic pinning and reversible resistance switching in high-temperature superconductor/ferromagnet multilayers. Phys. Rev. B 84 (2011), p. 054539. doi: 10.1103/PhysRevB.84.054539
  • M. Iavarone, S.A. Moore, J. Fedor, S.T. Ciocys, G. Karapetrov, J. Pearson, V. Novosad, and S.D. Bader, Visualizing domain wall and reverse domain superconductivity. Nat. Commun 5 (2014), p. 4766. doi: 10.1038/ncomms5766
  • U. Klein, Two-dimensional superconductor in a tilted magnetic field: states with finite Cooper-pair momentum. Phys. Rev. B 69 (2004), pp. 134518. doi: 10.1103/PhysRevB.69.134518
  • A.I. Buzdin, S.S. Krotov and D.A. Kuptsov, Attraction of inclined vortices in magnetic superconductors. Phys. C 175 (1991), pp. 42–46. doi: 10.1016/0921-4534(91)90233-O
  • A.I. Buzdin and A.Y. Simonov, On the possibility of a first-order phase transition to the vortex state in layered superconductors. Phys. C 167 (1990), pp. 388–394. doi: 10.1016/0921-4534(90)90359-M
  • A.P. Hope, M.J. Naughton, D.A. Gajewski and M.B. Maple, Flux jump avalanches in torque studies of single crystal YBa2Cu3O7−δ. Phys. C 320 (1999), pp. 147–153. doi: 10.1016/S0921-4534(99)00353-6
  • M. Oussena, P.A. de Groot, R. Gagnon and L. Taillefer, Lock-in oscillations in magnetic hysteresis curves of YBa2Cu3O7-x single crystals. Phys. Rev. Lett 72 (1994), pp. 3606–3609. doi: 10.1103/PhysRevLett.72.3606
  • D. Feinberg and C. Villard, Intrinsic pinning and lock-in transition of flux lines in layered type-II superconductors. Phys. Rev. Lett 65 (1990), pp. 919–922. doi: 10.1103/PhysRevLett.65.919
  • J. Linder and J.W.A. Robinson, Superconducting spintronics. Nat. Phys. 11 (2015), pp. 307–315. doi: 10.1038/nphys3242
  • P.J. Curran, J. Kim, N. Satchell, J.D.S. Witt, G. Burnell, M.G. Flokstra, S.L. Lee and S.J. Bending, Continuously tuneable critical current in superconductor-ferromagnet multilayers. Appl. Phys. Lett 110 (2017), pp. 262601. doi: 10.1063/1.4989693
  • D. Jérome, A. Mazaud, M. Ribault and K. Bechgaard, Superconductivity in a synthetic organic conductor (TMTSF)2PF6. J. Phys. Lett 41 (1980), pp. 95–98. doi: 10.1051/jphyslet:0198000410409500
  • K. Bechgaard, K. Carneiro, M. Olsen, F.B. Rasmussen and C.S. Jacobsen, Zero-pressure organic superconductor: Di-(Tetramethyltetraselenafulvalenium)-Perchlorate [(TMTSF)2ClO4]. Phys. Rev. Lett 46 (1981), pp. 852–855. doi: 10.1103/PhysRevLett.46.852
  • H.H. Wang, K.D. Carlson, U. Geiser, A.M. Kini, A.J. Schultz, J.M. Williams, L.K. Montgomery, W.K. Kwok, U. Welp, K.G. Vandervoort, S.J. Boryschuk, A.V.S. Crouch, J.M. Kommers, D.M. Watkins, J.E. Schriber, D.L. Overmyer, D. Jung, J.J. Novoa and M.H. Whangbo, New κ-phase materials, κ-(ET)2Cu[N(CN)2]X. X = Cl, Br and I. The synthesis, structure and superconductivity above 11 K in the Cl (Tc = 12.8, 0.3 kbar) and Br(Tc = 11.6 K) salts. Synth. Met. 42 (1991), pp. 1983–1990. doi: 10.1016/0379-6779(91)91996-N
  • U. Geiser, A.J. Schultz, H.H. Wang, D.M. Watkins, D.L. Stupka, J.M. Williams, J.E. Schirber, D.L. Overmyer, D. Jung, J.J. Novoa and M.H. Whangbo, Strain index, lattice softness and superconductivity of organic donor-molecule salts. Phys. C 174 (1991), pp. 475–486. doi: 10.1016/0921-4534(91)91586-S
  • U. Geiser, A.M. Kini, H.H. Wang, M.A. Beno and J.M. Williams, Structure at 20 K of the organic superconductor κ-di[3,4;3’,4'-bis(ethylenedithio)-2,2’,5,5'-tetrathiafulvalenium] bromo(dicyanamido)cuprate(I), κ-(BEDT-TTF)2Cu[N(CN)2]Br. Acta Crystallogr. Sec. C 47 (1991), pp. 190–192. doi: 10.1107/S0108270190007843
  • G. Visentini, A. Painelli, A. Girlando and A. Fortunelli, The dimer model for κ-phase organic superconductors. Europhys. Lett 42 (1998), pp. 467–472. doi: 10.1209/epl/i1998-00273-1
  • R.H. McKenzie, Similarities between organic and cuprate superconductors. Science 278 (1997), pp. 820–821. doi: 10.1126/science.278.5339.820
  • U.G.L. Lahaise, Vibrating reed study of flux line dynamics in κ-(ET)₂Cu[N(CN)₂]Br. M.A. Thesis, University of Kentucky, 1994.
  • M.R. Norman, Unconventional superconductivity, in Novel Superfluids, Vol. 2, Chapter 13, Bennemann K.H., Ketterson J.B., eds., Oxford University Press, New York, 2014.
  • G. Aeppli, D.J. Bishop, C. Broholm, E. Bucher and K. Siemensmeyer, Magnetic order in the different superconducting states of UPt3. Phys. Rev. Lett 63 (1989), pp. 676–679. doi: 10.1103/PhysRevLett.63.676
  • A.M. Kini, U. Geiser, H.H. Wang, K.D. Carlson, J.M. Williams, W.K. Kwok, K.G. Vandervoort, J.E. Thompson, and D.L. Stupka, A new ambient-pressure organic superconductor, κ‌-(ET)2Cu[N(CN)2]Br, with the highest transition temperature yet observed (inductive onset Tc = 11.6 K, resistive onset = 12.5 K). lnorg. Chem. 29 (1990), pp. 2555–2557. doi: 10.1021/ic00339a004
  • W.K. Kwok, U. Welp, K.D. Carlson, G.W. Crabtree, K.G. Vandervoort, H.H. Wang, A.M. Kini, J.M. Williams, D.L. Stupka, L.K. Montgomery and J.E. Thompson, Unusual behavior in the upper critical magnetic fields of the ambient-pressure organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br [where BEDT-TTF represents bis(ethylenedithio)tetrathiofulvalene]. Phys. Rev. B 42 (1990), pp. 8686–8689. doi: 10.1103/PhysRevB.42.8686
  • S. Kamiya, Y. Shimojo, M.A. Tanatar, T. Ishiguro, H. Yamochi, and G. Saito, Magnetic field and temperature phase diagram of the pressurized organic superconductor κ-(ET)‌2Cu[N(CN)2]Br in the field parallel to the conducting plane. Phys. Rev. B 65 (2002), pp. 1–6. doi: 10.1103/PhysRevB.65.134510
  • M. Kund, K.H. Müller, W. Biberacher, K. Andres and G. Saito, Anomalous thermal expansion of the organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br. Phys. B 191 (1993), pp. 274–280. doi: 10.1016/0921-4526(93)90085-K
  • L.N. Bulaevskii, M. Ledvij and V.G. Kogan, Vortices in layered superconductors with Josephson coupling. Phys. Rev. B 46 (1992), pp. 366–380. doi: 10.1103/PhysRevB.46.366
  • J.R. Clem, Two-dimensional vortices in a stack of thin superconducting films: A model for high-temperature superconducting multilayers. Phys. Rev. B 43 (1991), pp. 7837–7846. doi: 10.1103/PhysRevB.43.7837
  • U.G. Lehmann, L.E. De Long, H.H. Wang, K.D. Carlson and J.M. Williams, Vibrating reed study of the flux line dynamics of κ-(ET)2Cu[N(CN)2]Br. J. Supercond. Nov. Magn 7 (1994), pp. 793–797. doi: 10.1007/BF01320871
  • S.M. De Soto, C.P. Slichter, A.M. Kini, H.H. Wang, U. Geiser and J.M. Williams, 13C NMR studies of the normal and superconducting states of the organic superconductor κ-(ET)2Cu[N(CN)2]Br. Phys. Rev. B 52 (1995), pp. 10364–10368. doi: 10.1103/PhysRevB.52.10364
  • H. Mayaffre, P. Wzietek, S. Charfi-Kaddour, C. Lenoir, D. Jérome and P. Batail, Electronic correlations in the quasi-2D organic superconductor κ-(ET)2Cu[N(CN)2]Br. Phys. B 206-207 (1995), pp. 767–770. doi: 10.1016/0921-4526(94)00580-O
  • K. Kanoda, K. Sakao, T. Takahashi, T. Komatsu and G. Saito, NMR study of an organic superconductor, κ-(BEDT-TTF)2Cu[N(CN)2]Br. Phys. C 185-189 (1991), pp. 2667–2668. doi: 10.1016/0921-4534(91)91455-D
  • S.M. De Soto, C.P. Slichter, H.H. Wang, U. Geiser and J.M. Williams, Evidence for the role of fluxoids in enhancing NMR spin-lattice relaxation and implications for intrinsic pinning of the flux lattice in organic superconductors. Phys. Rev. Lett 70 (1993), pp. 2956–2959. doi: 10.1103/PhysRevLett.70.2956
  • U. Welp, S. Fleshler, W.K. Kwok, G.W. Crabtree, K.D. Carlson, H.H. Wang, U. Geiser, J.M. Williams and V.M. Hitsman, Weak ferromagnetism in κ-(BEDT-TTF)2Cu[N(CN)2]Cl, where (ET) is bis(ethylenedithio)tetrathiafulvalene. Phys. Rev. Lett 69 (1992), pp. 840–843. doi: 10.1103/PhysRevLett.69.840
  • H. El Ouaddi, A. Tirbiyine, A. Taoufik, Y. Ait Ahmed, A. Hafid, M. Mamor, H. Chaib, A. Nafidi, and S. Snoussi, Disorder effect and the vortex phase transition in layered organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br. Magn. Reson. Solids 20 (2018), p. 18103.
  • K.H. Müller and V.N. Narozhnyi, Rare Earth Transition Metal Borocarbides (Nitrides): Superconducting, Magnetic, and Normal State Properties, Kluwer Academic Publishers, Boston, 2001.
  • L.E. De Long, V. Chandrasekhar, J.B. Ketterson, and V.V. Metlushko, Size and interface effects in patterned magnetic and superconducting thin films, in Electron Correlations and Materials Properties 2, Gonis A., Kioussis N., Ciftan M., eds., Kluwer Academic/Plenum Publishers, New York, 2002. pp. 43–71.
  • C. Nisoli, R. Moessner and P. Schiffer, Colloquium: artificial spin ice: Designing and imaging magnetic frustration. Rev. Mod. Phys 85 (2013), pp. 1473–1490. doi: 10.1103/RevModPhys.85.1473
  • L. Anghinolfi, H. Luetkens, J. Perron, M.G. Flokstra, O. Sendetskyi, A. Suter, T. Prokscha, P.M. Derlet, S.L. Lee, and L.J. Heyderman, Thermodynamic phase transitions in a frustrated magnetic metamaterial. Nat. Commun 6 (2015), p. 8278. doi: 10.1038/ncomms9278
  • O. Sendetskyi, V. Scagnoli, N. Leo, L. Anghinolfi, A. Alberca, J. Luning, U. Staub, P.M. Derlet, and L. Heyderman, Continuous magnetic phase transition in artificial square ice. Phys. Rev. B 99 (2019), p. 214430. doi: 10.1103/PhysRevB.99.214430
  • D. Levis, L.F. Cugliandolo, L. Foini and M. Tarzia, Thermal phase transitions in artificial spin ice. Phys. Rev. Lett 110 (2013), pp. 207206. doi: 10.1103/PhysRevLett.110.207206

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.