151
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Evolution of voids in single-crystal iron under uniaxial, biaxial and triaxial loading conditions

&
Pages 2068-2090 | Received 06 Feb 2020, Accepted 05 Apr 2020, Published online: 23 Apr 2020

References

  • G.I. Kanel, S.V. Razorenov, A.V. Utkin, V.E. Fortov, K. Baumung, H.U. Karow, D. Rusch, and V. Licht, Spall strength of molybdenum single crystals, J. Appl. Phys. 74 (1993), pp. 7162–7165. doi: 10.1063/1.355032
  • D. Curran, L. Seaman, and D. Shockey, Dynamic failure of solids, Phys. Rep. 147 (1987), pp. 253–388. doi: 10.1016/0370-1573(87)90049-4
  • S. Razorenov and G. Kanel, The strength of copper single crystals and the factors governing metal fracture in uniaxial dynamic stretching, Phys. Met. Metallogr. 74 (1992), pp. 526–530.
  • G.I. Kanel, S.V. Razorenov, K. Baumung, and J. Singer, Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point, J. Appl. Phys. 90 (2001), pp. 136–143. doi: 10.1063/1.1374478
  • S.V. Razorenov, G.I. Kanel, and V.E. Fortov, Iron at high negative pressures, J. Exp. Theor. Phys. Lett. 80 (2004), pp. 348–350. doi: 10.1134/1.1825120
  • J. Wang, S. Yip, S.R. Phillpot, and D. Wolf, Crystal instabilities at finite strain, Phys. Rev. Lett. 71 (1993), pp. 4182–4185 doi: 10.1103/PhysRevLett.71.4182
  • V.A. Lubarda, M.S. Schneider, D.H. Kalantar, B.A. Remington, and M.A. Meyers, Void growth by dislocation emission, Acta Mater. 52 (2004), pp. 1397–1408. doi: 10.1016/j.actamat.2003.11.022
  • K.T. Ramesh and S. Narasimhan, Finite deformations and the dynamic measurement of radial strains in compression Kolsky bar experiments, Int. J. Solids Struct. 33 (1996), pp. 3723–3738. doi: 10.1016/0020-7683(95)00206-5
  • Y. Li, Y. Guo, H. Hu, and Q. Wei, A critical assessment of high-temperature dynamic mechanical testing of metals, Int. J. Impact. Eng. 36 (2009), pp. 177–184. doi: 10.1016/j.ijimpeng.2008.05.004
  • O.S. Lee, H. Choi, and H. Kim, High-temperature dynamic deformation of aluminum alloys using SHPB, J. Mech. Sci. Technol. 25 (2011), pp. 143–148. doi: 10.1007/s12206-010-1106-9
  • S. Rawat, S. Chandra, V.M. Chavan, S. Sharma, M. Warrier, S. Chaturvedi, and R.J. Patel, Integrated experimental and computational studies of deformation of single crystal copper at high strain rates, J. Appl. Phys. 116 (2014), p. 213507.
  • R.W. Minich, J.U. Cazamias, M. Kumar, and A.J. Schwartz, Effect of microstructural length scales on spall behavior of copper, Metall. Mater. Trans. A 35 (2004), pp. 2663–2673. doi: 10.1007/s11661-004-0212-7
  • D. Erlich, D. Shockey, and L. Seaman, Symmetric rod impact technique for dynamic yield determination, in Shock Waves in Condensed Matter-1981, Nellis W. J., eds., AIP Publishing, Menlo Park, USA, 1982. pp. 402–406.
  • H. Jarmakani, B. Maddox, C.T. Wei, D. Kalantar, and M.A. Meyers, Laser shock-induced spalling and fragmentation in vanadium, Acta Mater. 58 (2010), pp. 4604–4628. doi: 10.1016/j.actamat.2010.04.027
  • S. Eliezer, I. Gilath, and T. Bar-Noy, Laser-induced spall in metals: Experiment and simulation, J. Appl. Phys. 67 (1990), pp. 715–724. doi: 10.1063/1.345777
  • E. Dekel, S. Eliezer, Z. Henis, E. Moshe, A. Ludmirsky, and I.B. Goldberg, Spallation model for the high strain rates range, J. Appl. Phys. 84 (1998), pp. 4851–4858. doi: 10.1063/1.368727
  • E. Moshe, S. Eliezer, E. Dekel, A. Ludmirsky, Z. Henis, M. Werdiger, I.B. Goldberg, N. Eliaz, and D. Eliezer, An increase of the spall strength in aluminum, copper, and Metglas at strain rates larger than 107 s−1, J. Appl. Phys. 83 (1998), pp. 4004–4011. doi: 10.1063/1.367222
  • E. Moshe, S. Eliezer, E. Dekel, Z. Henis, A. Ludmirsky, I.B. Goldberg, and D. Eliezer, Measurements of laser driven spallation in tin and zinc using an optical recording velocity interferometer system, J. Appl. Phys. 86 (1999), pp. 4242–4248. doi: 10.1063/1.371352
  • H. Tamura, T. Kohama, K. Kondo, and M. Yoshida, Femtosecond-laser-induced spallation in aluminum, J. Appl. Phys. 89 (2001), pp. 3520–3522. doi: 10.1063/1.1346996
  • W.J. Murphy, A. Higginbotham, G. Kimminau, B. Barbrel, E.M. Bringa, J. Hawreliak, R. Kodama, M. Koenig, W. McBarron, M.A. Meyers, B. Nagler, N. Ozaki, N. Park, B. Remington, S. Rothman, S.M. Vinko, T. Whitcher, and J.S. Wark, The strength of single crystal copper under uniaxial shock compression at 100 gpa, J. Phys. Condens. Matter 22 (2010), p. 065404. doi: 10.1088/0953-8984/22/6/065404
  • J. Belak, On the nucleation and growth of voids at high strain-rates, J. Comput. Aided Mater. Des. 5 (1998), pp. 193–206. doi: 10.1023/A:1008685029849
  • E. Seppälä, J. Belak, and R. Rudd, Effect of stress triaxiality on void growth in dynamic fracture of metals: A molecular dynamics study, Phys. Rev. B 69 (2004), p. 134101. doi: 10.1103/PhysRevB.69.134101
  • S. Rawat, M. Warrier, S. Chaturvedi, and V.M. Chavan, Temperature sensitivity of void nucleation and growth parameters for single crystal copper: A molecular dynamics study, Model. Simul. Mater. Sci. Eng. 19 (2011), p. 025007. doi: 10.1088/0965-0393/19/2/025007
  • S. Rawat and P.M. Raole, Molecular dynamics investigation of void evolution dynamics in single crystal iron at extreme strain rates, Comput. Mater. Sci. 154 (2018), pp. 393–404. doi: 10.1016/j.commatsci.2018.08.010
  • L. Seaman, D.R. Curran, and D.A. Shockey, Computational models for ductile and brittle fracture, J. Appl. Phys. 47 (1976), pp. 4814–4826. doi: 10.1063/1.322523
  • A.E. Mayer, Dynamic shear and tensile strength of iron: Continual and atomistic simulation, Mech. Solids 49 (2014), pp. 649–656. doi: 10.3103/S0025654414060065
  • S. Rawat, M. Warrier, S. Chaturvedi, and V.R. Ikkurthi, Multiscale simulations of damage of perfect crystal Cu at high strain rates, Pramana 83 (2014), pp. 265–272. doi: 10.1007/s12043-014-0792-8
  • H. Hemani, M. Warrier, N. Sakthivel, and S. Chaturvedi, Voxel based parallel post processor for void nucleation and growth analysis of atomistic simulations of material fracture, J. Mol. Graph. Model. 50 (2014), pp. 134–141. doi: 10.1016/j.jmgm.2014.04.004
  • V.R. Ikkurthi, H. Hemani, R. Sugandhi, S. Rawat, P. Pahari, M. Warrier, and S. Chaturvedi, Multi-scale computational approach for modelling spallation at high strain rates in single-crystal materials, Procedia Eng. 173 (2017), pp. 1177–1184. doi: 10.1016/j.proeng.2016.12.101
  • P.N. Mayer and A.E. Mayer, Size distribution of pores in metal melts at non-equilibrium cavitation and further stretching, and similarity with the spall fracture of solids, Int. J. Heat Mass Transf. 127 (2018), pp. 643–657. doi: 10.1016/j.ijheatmasstransfer.2018.08.053
  • A.E. Mayer and P.N. Mayer, Evolution of pore ensemble in solid and molten aluminum under dynamic tensile fracture: Molecular dynamics simulations and mechanical models, Int. J. Mech. Sci. 157-158 (2019), pp. 816–832. doi: 10.1016/j.ijmecsci.2019.05.023
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995), pp. 1–19. doi: 10.1006/jcph.1995.1039
  • A. Caro, J. Hetherly, A. Stukowski, M. Caro, E. Martinez, S. Srivilliputhur, L. Zepeda-Ruiz, and M. Nastasi, Properties of helium bubbles in Fe and FeCr alloys, J. Nucl. Mater. 418 (2011), pp. 261–268. doi: 10.1016/j.jnucmat.2011.07.010
  • G.J. Ackland, M.I. Mendelev, D.J. Srolovitz, S. Han, and A.V. Barashev, Development of an interatomic potential for phosphorus impurities in α-iron, J. Phys. Condens. Matter 16 (2004), pp. S2629–S2642. doi: 10.1088/0953-8984/16/27/003
  • W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31 (1985), pp. 1695–1697. doi: 10.1103/PhysRevA.31.1695
  • W.G. Hoover, Constant-pressure equations of motion, Phys. Rev. A 34 (1986), pp. 2499–2500. doi: 10.1103/PhysRevA.34.2499
  • A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO: The open visualization tool, Model. Simul. Mater. Sci. Eng. 18 (2009), p. 015012.
  • T.P. Remington, E.N. Hahn, S. Zhao, R. Flanagan, J.C.E. Mertens, S. Sabbaghianrad, T.G. Langdon, C.E. Wehrenberg, B.R. Maddox, D.C. Swift, B.A. Remington, N. Chawla, and M.A. Meyers, Spall strength dependence on grain size and strain rate in tantalum, Acta Mater. 158 (2018), pp. 313–329. doi: 10.1016/j.actamat.2018.07.048
  • S. Rawat and S.P. Joshi, Effect of multiaxial loading on evolution of {10-12} twinning in magnesium single crystals. Mater. Sci. Eng. A 659 (2016), pp. 256–269. doi: 10.1016/j.msea.2016.02.049

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.