338
Views
5
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Modelling and simulation of dynamic recrystallisation based on multi-phase-field and dislocation-based crystal plasticity models

&
Pages 2106-2127 | Received 13 Jan 2020, Accepted 10 Apr 2020, Published online: 28 Apr 2020

References

  • A. Rollett, F. Humphreys, G.S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena. 2nd ed. Elsevier, Oxford, 2004.
  • F.J. Humphreys, P.B. Prangnell and R. Priestner, Fine-grained alloys by thermomechanical processing. Curr. Opin. Solid State Mater. Sci 5 (2001), pp. 15–21. doi: 10.1016/S1359-0286(00)00020-6
  • M.J. Luton and C.M. Sellars, Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation. Acta Metall. 17 (1969), pp. 1033–1043. doi: 10.1016/0001-6160(69)90049-2
  • R. Ding and Z.X. Guo, Microstructural evolution of a Ti-6Al-4V alloy during β-phase processing: experimental and simulative investigations. Mater. Sci. Eng. A 365 (2004), pp. 172–179. doi: 10.1016/j.msea.2003.09.024
  • M. Bernacki, Y. Chastel, T. Coupez and R.E. Logé, Level set framework for the numerical modelling of primary recrystallization in polycrystalline materials. Scr. Mater 58 (2008), pp. 1129–1132. doi: 10.1016/j.scriptamat.2008.02.016
  • M. Bernacki, R.E. Logé and T. Coupez, Level set framework for the finite-element modelling of recrystallization and grain growth in polycrystalline materials. Scr. Mater 64 (2011), pp. 525–528. doi: 10.1016/j.scriptamat.2010.11.032
  • T. Takaki, T. Hirouchi, Y. Hisakuni, A. Yamanaka and Y. Tomita, Multi-phase-field model to simulate microstructure evolutions during dynamic recrystallization. Mater. Trans 49 (2008), pp. 2559–2565. doi: 10.2320/matertrans.MB200805
  • T. Takaki, C. Yamamoto, A. Yamanaka and Y. Tomita, Multiscale modeling of hot-working with dynamic recrystallization by coupling microstructure evolution and macroscopic mechanical behavior. Int. J. Plast 52 (2014), pp. 105–116. doi: 10.1016/j.ijplas.2013.09.001
  • I. Steinbach and F. Pezzolla, A generalized field method for multiphase transformations using interface fields. Phys. D Nonlinear Phenom 134 (1999), pp. 385–393. doi: 10.1016/S0167-2789(99)00129-3
  • Y. Aoyagi and K. Shizawa, Multiscale crystal plasticity modeling based on geometrically necessary crystal defects and simulation on fine-graining for polycrystal. Int. J. Plast 23 (2007), pp. 1022–1040. doi: 10.1016/j.ijplas.2006.10.009
  • T. Takaki, A. Yamanaka, Y. Higa and Y. Tomita, Phase-field model during static recrystallization based on crystal-plasticity theory. J. Comput. Mater. Des 14 (2007), pp. 75–84. doi: 10.1007/s10820-007-9083-8
  • S. Björklund and M. Hillert, An analysis of the relation between grain growth and recrystallization based on experimental boundary mobilities. Met. Sci 9 (1975), pp. 127–134. doi: 10.1179/030634575790444801
  • J.A. Warren, R. Kobayashi, A.E. Lobkovsky and W.C. Carter, Extending phase field models of solidification to polycrystalline materials. Acta Mater. 51 (2003), pp. 6035–6058. doi: 10.1016/S1359-6454(03)00388-4
  • W. Roberts and B. Ahlblom, A nucleation criterion for dynamic recrystallization during hot working. Acta Metall. 26 (1978), pp. 801–813. doi: 10.1016/0001-6160(78)90030-5
  • J. Pan and J.R. Rice, Rate sensitivity of plastic flow and implications for yield-surface vertices. Int. J. Solids Struct 19 (1983), pp. 973–987. doi: 10.1016/0020-7683(83)90023-9
  • J.E. Bailey and P.B. Hirsch, The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Philos. Mag 5 (1960), pp. 485–497. doi: 10.1080/14786436008238300
  • S. Miura, S. Ochiai, Y. Oya, Y. Mishima and T. Suzuki, The effect of strain rate on the flow stress of Ni3(Al, Ti) single crystals. J. Japan Inst. Met 51 (1987), pp. 400–406. doi: 10.2320/jinstmet1952.51.5_400
  • T. Ohashi, Numerical modelling of plastic multislip in metal crystals of f.c.c. type. Philos. Mag. A 70 (1994), pp. 793–803. doi: 10.1080/01418619408242931
  • P.G. Bordoni, Dislocation relaxation at high frequencies. Nuovo Cim 17 (1960), pp. 43–91. doi: 10.1007/BF02911183
  • S.G. Kim, D.I. Kim, W.T. Kim and Y.B. Park, Computer simulations of two-dimensional and three-dimensional ideal grain growth. Phys. Rev. E 74 (2006), pp. 061605. doi: 10.1103/PhysRevE.74.061605
  • M. Ohashi, T. Endo and T. Sakai, Effect of initial grain size on dynamic recrystallization of pure nickel. J. Japan Inst. Met 54 (1990), pp. 435–441. doi: 10.2320/jinstmet1952.54.4_435
  • R. Asaro, Geometrical effects in the inhomogeneous deformation of ductile single crystals. Acta. Metal 27 (1979), pp. 445–453. doi: 10.1016/0001-6160(79)90036-1
  • J. Guedes and N. Kikuchi, Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput. Methods Appl. Mech. Eng 83 (1990), pp. 143–198. doi: 10.1016/0045-7825(90)90148-F

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.