269
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

First-principles studies of Tin+1SiNn (n = 1, 2, 3) MAX phase

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2183-2204 | Received 01 Dec 2019, Accepted 20 Apr 2020, Published online: 12 May 2020

References

  • M. Radovic and M.W. Barsoum, MAX phases: Bridging the gap between metals and ceramics. Am. Ceram. Soc. Bull. 92 (2013), pp. 20–27.
  • G. Surucu, A. Gencer, X. Wang, and O. Surucu, Lattice dynamical and thermo-elastic properties of M2AlB (M = V, Nb, Ta) MAX phase borides. J. Alloys Compd 819 (2020), pp. 153256. doi: 10.1016/j.jallcom.2019.153256
  • M.W. Barsoum, MAX Phases: Properties of Machinable Ternary Carbides and Nitrides, Wiley, New York, 2013.
  • M.A. Hadi, Superconducting phases in a remarkable class of metallic ceramics. J. Phys. Chem. Solids 138 (2020), pp. 109275. doi: 10.1016/j.jpcs.2019.109275
  • M.W. Barsoum and M. Radovic, Elastic and mechanical properteis of the MAX phases. Annu. Rev. Mater. Res 41 (2011), pp. 195–227. doi: 10.1146/annurev-matsci-062910-100448
  • G. Surucu, Investigation of structural, electronic, anisotropic elastic, and lattice dynamical properties of MAX phases borides: An Ab-inito study on hypothetical M2AB (M = Ti, Zr, Hf; A = Al, Ga, In) compounds. Mater. Chem. Phys 203 (2018), pp. 106–117. doi: 10.1016/j.matchemphys.2017.09.050
  • J.P. Palmquist, S. Li, P.O.A. Persson, J. Emmerlich, O. Wilhelmsson, H. Högberg, M.I. Katsnelson, B. Johansson, R. Ahuja, O. Eriksson, L. Hultman, and U. Jansson, Mn+1AXn phases in the Ti−Si−C system studied by thin-film synthesis and ab initio calculation. Phys. Rev. Bno. 70B (2004), pp. 165401. doi: 10.1103/PhysRevB.70.165401
  • M. Magnuson, J.P. Palmquist, M. Mattesini, S. Li, R. Ahuja, O. Eriksson, J. Emmerlich, O. Wilhelmsson, P. Eklund, H. Högberg, L. Hultman, and U. Jansson, Electronic structure investigation of Ti3AlC2, Ti3SiC2, and Ti3GeC2 by soft-X-ray emission spectroscopy. Phys. Rev. B 72 (2005), pp. 245101. doi: 10.1103/PhysRevB.72.245101
  • Z.M. Sun, Progress in research and development on MAX phases: A family of layered ternary compounds. Int. Mater. Rev 56 (2011), pp. 143–166. doi: 10.1179/1743280410Y.0000000001
  • A. Procopio, T. El-Raghy, and M.W. Barsoum, Synthesis of Ti4AlN3 and phase equilibria in the Ti-Al-N system. Metall. Mater. Trans. A 31 (2000), pp. 373–378. doi: 10.1007/s11661-000-0273-1
  • Z. Lin, Y. Zhou, and J. Wang, Structural characterization of a new layered-ternary Ta4AlC3 ceramic. J. Mater. Res 21 (2006), pp. 2587–2592. doi: 10.1557/jmr.2006.0310
  • C. Hu, F.Z. Li, J. Zhang, J.M. Wang, J.Y. Wang, and Y.C. Zhou, Nb4alc3: A new compound belonging to the max phases. Scripta Mater 57 (2007), pp. 893–896. doi: 10.1016/j.scriptamat.2007.07.038
  • C. Hu, J. Zhang, J. Wang, F. Li, and Y. Zhou, Crystal structure of V4AlC3: A new layered ternary carbide. J. Am. Ceram. Soc 91 (2008), pp. 636–639. doi: 10.1111/j.1551-2916.2007.02136.x
  • M. Sokol, V. Natu, S. Kota, and M.W. Barsoum, On the chemical diversity of the MAX phases. Tre. Chem 1 (2019), pp. 210–223. doi: 10.1016/j.trechm.2019.02.016
  • M. Magnuson and M. Mattesini, Chemical bonding and electronic-structure in MAX phases as viewed by X-ray spectroscopy and density functional theory. Thin Solid Films 621 (2017), pp. 108–130. doi: 10.1016/j.tsf.2016.11.005
  • I.M. Low, Advances in Science and Technology of Mn+1AXn Phases. 1st ed. Elsevier, London, England, 2012, pp. 271–413.
  • V.J. Keast, S. Harris, and D.K. Smith, Prediction of the stability of the Mn+1AXn phases from first principles. Phys. Rev. B 80 (2009), pp. 214113. doi: 10.1103/PhysRevB.80.214113
  • Y.P. Gan, X.K. Qian, X.D. He, Y.X. Chen, S.N. Yun, and Y. Zhou, Structural, elastic and electronic properties of a new ternary-layered Ti2SiN. Physica B 406 (2011), pp. 3847–3850. doi: 10.1016/j.physb.2011.07.008
  • V.J. Keast, S. Harris, and D.K. Smith, Prediction of the stability of the Mn+1AXn phases from first principles. Phys. Rev. B 80 (2009), pp. 214113. doi: 10.1103/PhysRevB.80.214113
  • H. Li, Z. Wang, G. Sun, P. Yu, and W. Zhang, First-principles study on the structural, elastic and electronic properties of Ti2SiN under high pressure. Solid State Commun. 237 (2016), pp. 24–27. doi: 10.1016/j.ssc.2016.03.019
  • A. Candan, S. Akbudak, Ş. Uğur, and G. Uğur, Theoretical research on structural, electronic, mechanical, lattice dynamical and thermodynamic properties of layered ternary nitrides Ti2AN (A = Si, Ge and Sn). J. Alloys Compd 771 (2019), pp. 664–673. doi: 10.1016/j.jallcom.2018.08.286
  • T. Wu, Q.Y. Chen, and R. Zhang, First principle study on the stability, elastic, thermodynamic and electronic properties of Ti3SiN2. World Sci. Res 4 (2018), pp. 84–95.
  • K.D. Yin, X.T. Zhang, Q. Huang, and J.M. Xue, Theoretical investigation on radiation tolerance of phases. Chinese Phys. B 26 (2017), pp. 060703. doi: 10.1088/1674-1056/26/6/060703
  • H.M. Hossain, M.S. Ali, and A.K.M.A. Islam, Structural, elastic, electronic and optical properties of a newly predicted layered-ternary Ti4SiN3: A first-principles study, arXiv preprint arXiv:1108.0553 (2011).
  • G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47 (1993), pp. 558. doi: 10.1103/PhysRevB.47.558
  • G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54 (1996), pp. 11169. doi: 10.1103/PhysRevB.54.11169
  • G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59 (1999), pp. 1758. doi: 10.1103/PhysRevB.59.1758
  • Y. Zhang and W. Yang, Comment on “generalized gradient approximation made simple”. Phys. Rev. Lett 80 (1998), pp. 890. doi: 10.1103/PhysRevLett.80.890
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett 77 (1996), pp. 3865. doi: 10.1103/PhysRevLett.77.3865
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13 (1976), pp. 5188. doi: 10.1103/PhysRevB.13.5188
  • M. Methfessel and A.T. Paxton, High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40 (1989), pp. 3616. doi: 10.1103/PhysRevB.40.3616
  • B.A. Auld, Acustic Fields and Waves in Solid, Wiley, New York, 1973.
  • N.W. Ashcroft and N.D. Mermin, Solid State Physics, Saunders, Philadelpia, 1976.
  • A. Togo and I. Tanaka, First principles phonon calculations in materials science. Scripta Mater 108 (2015), pp. 1–5. doi: 10.1016/j.scriptamat.2015.07.021
  • M. Dahlqvist, B. Alling, and J. Rosen, Stability trends of MAX phases from first principles. Phys. Rev. B 81 (2012), pp. 220102(R). doi: 10.1103/PhysRevB.81.220102
  • G. Surucu, K. Colakoglu, E. Deligoz, and N. Korozlu, Frist-principles study on the MAX phases Tin+1GaNn (n=1,2, and 3). J. Elect. Mater 45 (2006), pp. 4256–4264. doi: 10.1007/s11664-016-4607-1
  • A. Gencer and G. Surucu, Electronic and lattice dynamical properties of Ti2SiB MAX phase. Mater. Res. Express 5 (2018), pp. 076303. doi: 10.1088/2053-1591/aace7f
  • M. Magnuson, M. Mattesini, S. Li, C. Höglund, M. Beckers, L. Hultman, and O. Eriksson, Bonding mechanism in the nitrides Ti2AlN and TiN: An experimental and theoretical investigation. Phys. Rev. B 76 (2007), pp. 195127. doi: 10.1103/PhysRevB.76.195127
  • M. Born and K. Huang, Dynamics Theory of Crystal Lattices, Clarendon Press, Oxford, 1954.
  • F. Mouhat and F.X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90 (2014), pp. 224104. doi: 10.1103/PhysRevB.90.224104
  • M. Born and R.D. Misra, On the stability of crystal lattice. IV. Math. Proc. Camb. Philos. Soc 36 (1940), pp. 466–478. doi: 10.1017/S0305004100017515
  • G.V. Sinko and N.A. Smirnov, Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure. J. Phys.: Condens. Matter 14 (2002), pp. 6989–7005.
  • S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Phil. Mag 45 (1954), pp. 823–843. doi: 10.1080/14786440808520496
  • W. Voigt, Lehrbuch der Kristallphysik [The Textbook of Crystal Physics], B.G. Teubner, Leipzig und Berlin, 1928.
  • A. Reuss, Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle [Calculation of the liquid limit of mixed crystals on the basis of the plasticity condition for single crystals]. J. Appl. Math. Mech 9 (1929), pp. 49–58.
  • R. Hill, The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. A 65 (1952), pp. 349–354. doi: 10.1088/0370-1298/65/5/307
  • Q. Long, X. Nie, S.L. Shang, J. Wang, Y. Du, Z. Jin, and Z.K. Liu, C15 NbCr2 Laves phase with mechanical properties beyond Pugh’s criterion, Comp. Mater. Sci 121 (2016), pp. 167–173.
  • D.H. Chung and W.R. Buessem, The Voigt-Reuss-Hill approximation and elastic moduli of polycrystalline MgO, CaF2, β-ZnS, ZnSe, and CdTe. J. Appl. Phys 38 (1967), pp. 2535–2540. doi: 10.1063/1.1709944
  • J. Haines, J.M. Leger, and G. Bocquillon, Synthesis and design of superhard materials. Annu. Rev. Mater. Res 31 (2001), pp. 1–23. doi: 10.1146/annurev.matsci.31.1.1
  • V.V. Bannikov, I.R. Shein, and A.L. Ivanovskii, Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN3. Phys. Status. Solidi – Rapid. Res. Lett 1 (2007), pp. 89–91. doi: 10.1002/pssr.200600116
  • J. Wang, J. Wang, A. Li, J. Li, and Y. Zhou, Theoretical study on the mechanism of anisotropic thermal properties of Ti2AlC and Cr2AlC. J. Am. Ceram. Soc 97 (2014), pp. 1202–1208. doi: 10.1111/jace.12814
  • R. Galliac, P. Pullumbi, and F.X. Coudert, ELATE: An open-source online application for analysis and visualization of elastic tensors. J. Phys. Condens. Matter 28 (2016), pp. 275201–275205. doi: 10.1088/0953-8984/28/27/275201
  • G. Surucu, A. Candan, A. Erkisi, A. Gencer, and H.H. Gullu, First principles study on the structural, electronic, mechanical and lattice dynamical properties of XRhSb (X = Ti and Zr) paramagnet half-Heusler antimonides. Mater. Res. Express 6 (2019), pp. 106315. doi: 10.1088/2053-1591/ab4039
  • H. Fu, W. Liu, Y. Ma, and T. Gao, Prediction study of the axial compressibility, anisotropy and dynamic properties for single crystal Ti2GeC. J. Alloy Comp 506 (2010), pp. 22–26. doi: 10.1016/j.jallcom.2010.06.186
  • K. Lau and A.K. McCurdy, Elastic anisotropy factors for orthorhombic, tetragonal, and hexagonal crystals. Phys. Rev. B 58 (1998), pp. 8980. doi: 10.1103/PhysRevB.58.8980
  • N. Miao, B. Sa, J. Zhou, and Z. Sun, Theoretical investigation on the transition-metal borides with Ta3B4 -type structure: A class of hard and refractory materials. Comput. Mater. Sci 50 (2011), pp. 1559–1566. doi: 10.1016/j.commatsci.2010.12.015
  • O.L. Anderson, A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 24 (1963), pp. 909–917. doi: 10.1016/0022-3697(63)90067-2
  • N. Korozlu, K. Colakoglu, E. Deligoz, and G. Surucu, First-principles study of structural, elastic, lattice dynamical and thermodynamical properties of GdX (X = Bi, Sb). Phil. Mag 14 (2010), pp. 1833–1852. doi: 10.1080/14786430903489607
  • S. Baroni, S. Gironcoli, and A.D. Corso, Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phy 73 (2001), pp. 515–562. doi: 10.1103/RevModPhys.73.515
  • E. Kroumova, M.I. Aroyo, J.M. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, and H. Wondratschek, Bilbao crystallographic server: Useful databases and tools for phase-transition studies. Phase Transitions 76 (2003), pp. 155–170. doi: 10.1080/0141159031000076110
  • O. Chaix-Pluchery, A. Thore, S. Kota, J. Halim, C. Hu, J. Rosen, T. Ouisse, and M.W. Barsoum, First-order Raman scattering in three-layered Mo-based ternaries: MoAlB, Mo2Ga2C and Mo2GaC. J. Raman Spectrosc 48 (2017), pp. 631–638. doi: 10.1002/jrs.5087
  • M.A. Blanco, E. Francisco, and V. Luana, GIBBS: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Comm 158 (2004), pp. 57–72. doi: 10.1016/j.comphy.2003.12.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.