183
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Elongation improvement in nano bainite steel obtained from plastically deformed primary austenite

, &
Pages 2244-2261 | Received 01 Oct 2019, Accepted 29 Apr 2020, Published online: 20 May 2020

References

  • F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones and P. Brown, Very strong low temperature bainite. Mater. Sci. Technol. 18 (2002), pp. 279–284. doi: 10.1179/026708301225000725
  • C. García Mateo, F.G. Caballero and H.K.D.H. Bhadeshia, Development of hard bainite. ISIJ Int. 43 (2003), pp. 1238–1243. doi: 10.2355/isijinternational.43.1238
  • F.G. Caballero, C. Garcia-Mateo and M.K. Miller, Design of novel bainitic steels: moving from ultrafine to nanoscale structures. JOM 66 (2014), pp. 747–755. doi: 10.1007/s11837-014-0908-0
  • C. Hulme-Smith and H.K.D.H. Bhadeshia, Mechanical properties of thermally-stable, nanocrystalline bainitic steels. Mater. Sci. Eng. A 700 (2017), pp. 714–720. doi: 10.1016/j.msea.2017.04.110
  • R. Rementeria, L. Morales-Rivas, M. Kuntz, C. Garcia-Mateo, E. Kerscher, T. Sourmail and F.G. Caballero, On the role of microstructure in governing the fatigue behaviour of nanostructured bainitic steels. Mater. Sci. Eng A 630 (2015), pp. 71–77. doi: 10.1016/j.msea.2015.02.016
  • R. Rementeria, F.G. Caballero, L. Morales-Rivas and C. Garcia-Mateo, Developing nanostructured metal at the atomic and nano scales. Adv. Mater. Process. 175 (2017), pp. 21–24.
  • L. Morales-Rivas, H.W. Yen, B.M. Huang, M. Kuntz, F.G. Caballero, J.R. Yang and C. Garcia-Mateo, Tensile response of two nanoscale bainite composite-like structures. JOM 67 (2015), pp. 2223–2235. doi: 10.1007/s11837-015-1562-x
  • F.G. Caballero, J.D. Poplawsky, H.W. Yen, R. Rementeria, L. Morales-Rivas, J.R. Yang and C. García-Mateo, Complex nano-scale structures for unprecedented properties in steels, materials science forum. Trans Tech Publ 99 (2017), pp. 2401–2406.
  • H. K. D. H. Bhadeshia, P. Brown, C. Garcia-Mateo (2010) Bainite steel and methods of manufacture therof. Patent no. GB2462197
  • C. Garcia-Mateo, F.G. Caballero and H.K.D.H. Bhadeshia, Low temperature bainite. J. Phys. IV 112 (2003), pp. 285–288.
  • M.N. Yoozbashi and S. Yazdani, Mechanical properties of nanostructured, low temperature bainitic steel designed using a thermodynamic model. Mater. Sci. Eng. A 527 (2010), pp. 3200–3205. doi: 10.1016/j.msea.2010.01.080
  • B. Avishan, S. Yazdani and S.H. Nedjad, Toughness variations in nanostructured bainitic steels. Mater. Sci. Eng. A 548 (2012), pp. 106–111. doi: 10.1016/j.msea.2012.03.098
  • B. Avishan, S. Yazdani, F. Caballero, T. Wang and C. Garcia-Mateo, Characterisation of microstructure and mechanical properties in two different nanostructured bainitic steels. Mater. Sci. Technol. 31 (2015), pp. 1508–1520. doi: 10.1179/1743284714Y.0000000745
  • B. Shendy, M. Yoozbashi, B. Avishan and S. Yazdani, An investigation on rotating bending fatigue behavior of nanostructured low-temperature bainitic steel. Acta Metallurgica Sinica (English Letters) 27 (2014), pp. 233–238. doi: 10.1007/s40195-014-0044-4
  • H.K.D.H. Bhadeshia, Bainite in Steels, Transformations, Microstructure and Properties, 2nd ed. Institute of Materials, Minerals and Mining, London, 2001.
  • H.K.D.H. Bhadeshia and D.V. Edmonds, Bainite in silicon steels: new composition; property approach Part 1. Met. Sci. 17 (1983), pp. 411–419. doi: 10.1179/030634583790420600
  • H.K.D.H. Bhadeshia and D.V. Edmonds, Bainite in silicon steels: new composition–property approach Part 2. Met. Sci. 17 (1983), pp. 420–425. doi: 10.1179/030634583790420646
  • C. García Mateo, F.G. Caballero and H.K.D.H. Bhadeshia, Acceleration of low-temperature bainite. ISIJ Int. 43 (2003), pp. 1821–1825. doi: 10.2355/isijinternational.43.1821
  • S.H. Song, R.G. Faulkner and P.E.J. Flewitt, Quenching and tempering-induced molybdenum segregation to grain boundaries in a 2.25 Cr–1Mo steel. Mater. Sci. Eng. A 281 (2000), pp. 23–27. doi: 10.1016/S0921-5093(99)00735-2
  • F.G. Caballero and H.K.D.H. Bhadeshia, Very strong bainite. Curr. Opin. Solid State Mater. Sci. 8 (2004), pp. 251–257. doi: 10.1016/j.cossms.2004.09.005
  • G. Rees and H. Bhadeshia, Bainite transformation kinetics Part 1 modified model. Mater. Sci. Technol. 8 (1992), pp. 985–993. doi: 10.1179/mst.1992.8.11.985
  • W. Gong, Y. Tomot, M.S. Koo and Y. Adachi, Effect of ausforming on nanobainite steel. Scr. Mater. 63 (2010), pp. 819–822. doi: 10.1016/j.scriptamat.2010.06.024
  • M. Kabirmohammadi, B. Avishan and S. Yazdani, Transformation kinetics and microstructural features in low-temperature bainite after ausforming process. Mater. Chem. Phys. 184 (2016), pp. 306–317. doi: 10.1016/j.matchemphys.2016.09.057
  • M. Zhang, Y. Wang, C. Zheng, F. Zhang and T. Wang, Effects of ausforming on isothermal bainite transformation behaviour and microstructural refinement in medium-carbon Si–Al-rich alloy steel. Mater. Des. 62 (2014), pp. 168–174. doi: 10.1016/j.matdes.2014.05.024
  • H. Hu, H.S. Zurob, G. Xu, D. Embury and G.R. Purdy, New insights to the effects of ausforming on the bainitic transformation. Mater. Sci. Eng. A 626 (2015), pp. 34–40. doi: 10.1016/j.msea.2014.12.043
  • M. Zhang, T. Wang, Y. Wang, J. Yang and F. Zhang, Preparation of nanostructured bainite in medium-carbon alloysteel. Mater. Sci. Eng. A 568 (2013), pp. 123–126. doi: 10.1016/j.msea.2013.01.046
  • S. Golchin, B. Avishan and S. Yazdani, Effect of 10% ausforming on impact toughness of nano bainite austempered at 300° C. Mater. Sci. Eng. A 656 (2016), pp. 94–101. doi: 10.1016/j.msea.2016.01.025
  • M. Nikravesh, M. Naderi and G. Akbari, Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel. Mater. Sci. Eng. A 540 (2012), pp. 24–29. doi: 10.1016/j.msea.2012.01.018
  • M. Zhang, Y. Wang, C. Zheng, F. Zhang and T. Wang, Austenite deformation behavior and the effect of ausforming process on martensite starting temperature and ausformed martensite microstructure in medium-carbon Si–Al-rich alloy steel. Mater. Sci. Eng. A 596 (2014), pp. 9–14. doi: 10.1016/j.msea.2013.11.097
  • J. Vivas, C. Capdevila, J. Jimenez, M. Benito-Alfonso and D. San-Martin, Effect of ausforming temperature on the microstructure of G91 steel. Metals. (Basel) 7 (2017), pp. 236–246. doi: 10.3390/met7070236
  • H.S. Yang, D.W. Suh and H.K.D.H. Bhadeshia, More complete theory for the calculation of the martensite–start temperature in steels. ISIJ Int. 52 (2012), pp. 164–166. doi: 10.2355/isijinternational.52.164
  • H. Bhadeshia, The bainite transformation: unresolved issues. Mater. Sci. Eng. A 273 (1999), pp. 58–66. doi: 10.1016/S0921-5093(99)00289-0
  • S. Chatterjee, H.S. Wang, J.R. Yang and H.K.D.H. Bhadeshia, Mechanical stabilisation of austenite. Mater. Sci. Technol. 22 (2006), pp. 641–644. doi: 10.1179/174328406X86128
  • M. Maalekian, E. Kozeschnik, S. Chatterjee and H. Bhadeshia, Mechanical stabilisation of eutectoid steel. Mater. Sci. Technol. 23 (2007), pp. 610–612. doi: 10.1179/174328407X158686
  • K. Tsuzaki, S.i. Fukasaku, Y. Tomota and T. Maki, Effect of prior deformation of austenite on the γ→ ε martensitic transformation in Fe–Mn alloys. Mater. Trans. JIM 32 (1991), pp. 222–228. doi: 10.2320/matertrans1989.32.222
  • J. Yang, C. Huang, W. Hsieh and C. Chiou, Mechanical stabilization of austenite against bainitic reaction in Fe–Mn–Si–C bainitic steel. Mater. Trans. JIM 37 (1996), pp. 579–585. doi: 10.2320/matertrans1989.37.579
  • W. Gong, Y. Tomota, Y. Adachi, A. Paradowska, J. Kelleher and S. Zhang, Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel. Acta Mater. 61 (2013), pp. 4142–4154. doi: 10.1016/j.actamat.2013.03.041
  • A. Eres-Castellanos, L. Morales-Rivas, A. Latz, F.G. Caballero and C. Garcia-Mateo, Effect of ausforming on the anisotropy of low temperature bainitic transformation. Mater. Charact. 145 (2018), pp. 371–380. doi: 10.1016/j.matchar.2018.08.062
  • B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction, 3rd ed. Prentice Hall, NewYork, 2001.
  • M.J. Dickson, The significance of texture parameters in phase analysis by X-ray diffraction. J. Appl. Crystallogr. 2 (1969), pp. 176–180. doi: 10.1107/S0021889869006881
  • C. Garcia-Mateo, M. Peet, F.G. Caballero and H.K.D.H. Bhadeshia, Tempering of hard mixture of bainitic ferrite and austenite. Mater. Sci. Technol. 20 (2004), pp. 814–818. doi: 10.1179/026708304225017355
  • A. Kammouni, W. Saikaly, M. Dumont, C. Marteau, X. Bano and A. Charaï, Effect of the bainitic transformation temperature on retained austenite fraction and stability in Ti microalloyed TRIP steels. Mater. Sci. Eng. A 518 (2009), pp. 89–96. doi: 10.1016/j.msea.2009.05.015
  • B. Avishan, C. Garcia-Mateo, L. Morales-Rivas, S. Yazdani and F.G. Caballero, Strengthening and mechanical stability mechanisms in nanostructured bainite. J. Mater. Sci. 68 (2013), pp. 6121–6132. doi: 10.1007/s10853-013-7408-4
  • R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons Inc, 1989.
  • B. Avishan, A. Sefidgar and S. Yazdani, High strain rate deformation of nanostructured super bainite. J. Mater. Sci. 54 (2019), pp. 3455–3468. doi: 10.1007/s10853-018-3026-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.